Skip to main content

Nitric Oxide and Life or Death of Human Leukemia Cells

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Nitric oxide (NO) has many actions that affect physiologic and pathologic processes. These effects are important in maintenance of appropriate smooth muscle tone, learning and memory, cell signaling, and defense from infection and neoplasia. NO is an important regulator of apoptosis and death of both normal and malignant cells, and it can serve as a mediator of inflammation, mutagenesis, and carcinogenesis. NO produced by bone marrow “stromal” cells (e.g., fibroblasts, macrophages, fat cells, and endothelial cells) can influence growth and differentiation of normal hematopoietic cells. In addition, hematopoietic cells themselves can produce NO that might influence these processes. As the importance of NO was being noted in vascular biology in the early 1980s, NO was also being recognized as the key mediator of macrophage-mediated neoplastic cell stasis and death. NO from cells or from NO pro-drugs can induce apoptosis and death of many neoplastic cells in vitro in an immunologically nonspecific manner. NO can also inhibit apoptosis and death of tumor cells by blocking activity of caspases. Malignant cells may express NO synthase (NOS), and NOS inhibitors induce apoptosis of these cells in vitro under certain conditions. High levels of NO (micromolar) cause apoptosis and death of normal bone marrow hematopoietic cells in vitro. Likewise, high levels of exogenous NO mediate cytotoxicity for acute leukemia cells and chronic lymphocytic leukemia (CLL) cells in vitro. CLL cells overexpress inducible NOS (NOS2) and neuronal NOS (NOS1), and a variety of NOS inhibitors effectively kill CLL cells in vitro. NOS1 inhibitors are the most potent at inducing cytotoxicity in CLL cells in vitro. The cytotoxicity may be caused by prevention of an NO-mediated block in caspase-mediated apoptosis of the leukemia cells. Investigators are working to move results of preclinical studies into clinical trials of NOS inhibitors or novel NO pro-drugs for treatment of human leukemias.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AR-17477:

N-(4-(2-((3-chlorophenylmethyl) amino) ethyl) phenyl)-2- thiophe-carboxamidine dihydrochloride

7-Nitro:

7-nitroindazole

Vinyl-L-NIO:

N 5-(1-Imino-3-butenyl)-l-ornithine

1,3 PB-ITU:

S,Sʹ-(1,3-Phenylene-bis(1,2-ethanediyl))bis-isothiourea ·2HBr

L-NIL:

L-N 6-(1-Iminoethyl)-lysine

References

  • Adams, D.J., Levesque, M.C., Weinberg, J.B., Smith, K.L., Flowers, J.L., Moore, J., Colvin, O.M., and Silber, R. (2001). Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes. Leukemia 15, 1852–1859.

    Article  PubMed  CAS  Google Scholar 

  • Ahmed, B. and Van Den Oord, J.J. (1999). Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br. J. Dermatol. 141, 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Alderton, W.K., Cooper, C.E., and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593–615.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, J.H., Reynolds, H.R., Stebbins, A.L., Dzavik, V., Harrington, R.A., Van de Werf, F., and Hochman, J.S. (2007). Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA 297, 1657–1666.

    Article  PubMed  CAS  Google Scholar 

  • Andoh, T., Lee, S.Y., and Chiueh, C.C. (2000). Preconditioning regulation of bcl-2 and p66shc by human NOS1 enhances tolerance to oxidative stress. Faseb. J. 14, 2144–2146.

    PubMed  CAS  Google Scholar 

  • Babu, B.R. and Griffith, O.W. (1998). Design of isoform-selective inhibitors of nitric oxide synthase [Review]. Curr. Opin. Chem. Biol. 2, 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Bakker, J., Grover, R., McLuckie, A., Holzapfel, L., Andersson, J., Lodato, R., Watson, D., Grossman, S., Donaldson, J., and Takala, J. (2004). Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144-002). Crit. Care Med. 32, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Billard C., Kern, C., Tang, R., Ajchenbaum-Cymbalista, F., and Kolb, J.P. (2003). Flavopiridol downregulates the expression of both the inducible NO synthase and p27(kip1) in malignant cells from B-cell chronic lymphocytic leukemia. Leukemia 17, 2435–2443.

    Google Scholar 

  • Blasko, E., Glaser, C.B., Devlin, J.J., Xia, W., Feldman, R.I., Polokoff, M.A., Phillips, G.B., Whitlow, M., Auld, D.S., McMillan, K., Ghosh, S., Stuehr, D.J., and Parkinson, J.F. (2002). Mechanistic studies with potent and selective inducible nitric-oxide. J. Biol. Chem. 277, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Bonavida, B., Baritaki, S., Huerta-Yepez, S., Vega, M.I., Chatterjee, D., and Yeung, K. (2008). Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide 19, 152–157.

    Article  PubMed  CAS  Google Scholar 

  • Borrello, M.A. and Phipps, R.P. (1996). The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages [see comments]. Immunol. Today 17, 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Brandao, M.M., Soares, E., Salles, T.S.I., and Saad, S.T.O. (2001). Expression of inducible nitric oxide synthase is increased in acute myeloid leukaemia. Acta Haematol. 106, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Brenman, J.E., Xia, H., Chao, D.S., Black, S.M., and Bredt, D.S. (1997). Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci. 19, 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Brouwer, M., Chamulitrat, W., Ferruzzi, G., Sauls, D.L., and Weinberg, J.B. (1996). Nitric oxide interactions with cobalamins: biochemical and functional consequences. Blood 88, 1857–1864.

    PubMed  CAS  Google Scholar 

  • Chabrier, P.E., Demerle-Pallardy, C., and Auguet, M. (1999). Nitric oxide synthases: targets for therapeutic strategies in neurological diseases [Review]. Cell. Mol. Life Sci. 55, 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  • Chakrapani, H., Goodblatt, M.M., Udupi, V., Malaviya, S., Shami, P.J., Keefer, L.K., and Saavedra, J.E. (2008). Synthesis and in vitro anti-leukemic activity of structural analogues of JS-K, an anti-cancer lead compound. Bioorg. Med. Chem. Lett. 18, 950–953.

    Article  PubMed  CAS  Google Scholar 

  • Chesler, D.A., McCutcheon, J.A., and Reiss, C.S. (2004). Posttranscriptional Regulation of Neuronal Nitric Oxide Synthase Expression by IFN-gamma. J. Interferon. Cytokine Res. 24, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Chiorazzi, N., Rai, K.R., and Ferrarini, M. (2005). Chronic lymphocytic leukemia. N. Engl. J. Med. 352, 804–815.

    Article  PubMed  CAS  Google Scholar 

  • Christopherson, K.S. and Bredt, D.S. (1997). Nitric Oxide In Excitable Tissues – Physiological Roles and Disease. J. Clin. Invest. 100, 2424–2429.

    Article  PubMed  CAS  Google Scholar 

  • Decker, T., Schneller, F., Sparwasser, T., Tretter, T., Lipford, G.B., Wagner, H., and Peschel, C. (2000). Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 95, 999–1006.

    PubMed  CAS  Google Scholar 

  • Drapier, J.C. and Hibbs, J.B., Jr. (1986). Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J. Clin. Invest. 78, 790–797.

    Article  PubMed  CAS  Google Scholar 

  • Eigler, A., Waller-Fontaine, K., Moeller, J., Hartmann, G., Hacker, U.T., and Endres, S. (1998). The hairy cell leukemia cell line Eskol spontaneously synthesizes tumor necrosis factor-alpha and nitric oxide. Leuk. Res. 22, 501–507.

    Article  PubMed  CAS  Google Scholar 

  • Enikolopov, G., Banerji, J., and Kuzin, B. (1999). Nitric oxide and Drosophila development. Cell Death Differ. 6, 956–963.

    Article  PubMed  CAS  Google Scholar 

  • Fehsel, K., Kroncke, K.D., Meyer, K.L., Huber, H., Wahn, V., and Kolbbachofen, V. (1995). Nitric Oxide Induces Apoptosis In Mouse Thymocytes. J. Immunol. 155, 2858–2865.

    PubMed  CAS  Google Scholar 

  • Forstermann, U., Boissel, J.P., and Kleinert, H. (1998). Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). Faseb. J. 12, 773–790.

    PubMed  CAS  Google Scholar 

  • Foster, M.W., McMahon, T.J., and Stamler, J.S. (2003). S-nitrosylation in health and disease. Trends Mol. Med. 9, 160–168.

    Article  PubMed  CAS  Google Scholar 

  • Fricker, S.P. (1999). Nitrogen monoxide-related disease and nitrogen monoxide scavengers as potential drugs. In: Sigel, A., Sigel, H. (Eds.), Met. Ions Biol. Syst. (pp. 665–721). Marcel Dekker Inc, Basel.

    Google Scholar 

  • Genaro, A.M., Hortelano, S., Alvarez, A., Martinez, C., and Bosca, L. (1995). Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J. Clin. Invest. 95, 1884–1890.

    Article  PubMed  CAS  Google Scholar 

  • Grandjenette, C., Kennel, A., Faure, G.C., Bene, M.C., and Feugier, P. (2007). Expression of functional toll-like receptors by B-chronic lymphocytic leukemia cells. Haematologica 92, 1279–1281.

    Article  PubMed  CAS  Google Scholar 

  • Granger, D.L. and Lehninger, A.L. (1982). Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J. Cell Biol. 95, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Granger, D.L., Taintor, R.R., Cook, J.L., and Hibbs, J.B., Jr. (1980). Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J. Clin. Invest. 65, 357–370.

    Article  PubMed  CAS  Google Scholar 

  • Granger D.L., Anstey, N.M., Miller, W.C., and Weinberg, J.B. (1999). Measuring nitric oxide production in human clinical studies [Review]. Methods Enzymol. 301, 49–61.

    Google Scholar 

  • Hall, A.V., Antoniou, H., Wang, Y., Cheung, A.H., Arbus, A.M., Olson, S.L., Lu, W.C., Kau, C.L., and Marsden, P.A. (1994). Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J. Biol. Chem. 269, 33082–33090.

    PubMed  CAS  Google Scholar 

  • Hammadi, A., Billard, C., Faussat, A.M., and Kolb, J.P. (2008). Stimulation of iNOS expression and apoptosis resistance in B-cell chronic lymphocytic leukemia (B-CLL) cells through engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB activation. Nitric Oxide 19, 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Hansel, T.T., Kharitonov, S.A., Donnelly, L.E., Erin, E.M., Currie, M.G., Moore, W.M., Manning, P.T., Recker, D.P., and Barnes, P.J. (2003). A selective inhibitor of inducible nitric oxide synthase inhibits exhaled breath nitric oxide in healthy volunteers and asthmatics. FASEB J. 17, 1298–1300.

    PubMed  CAS  Google Scholar 

  • Harbrecht, B.G. (2006). Therapeutic use of nitric oxide scavengers in shock and sepsis. Curr. Pharm. Des. 12, 3543–3549.

    Article  PubMed  CAS  Google Scholar 

  • Heller, A. (2008). Apoptosis-inducing high (·)NO concentrations are not sustained either in nascent or in developed cancers. Chem. Med. Chem. 3, 1493–1499.

    Google Scholar 

  • Hibbs, J.B., Jr. (1973). Macrophage nonimmunologic recognition: target cell factors related to contact inhibition. Science 180, 868–870.

    Article  PubMed  Google Scholar 

  • Hibbs, J.B., Jr. (1974). Discrimination between neoplastic and non-neoplastic cells in vitro by activated macrophages. J. Natl. Cancer Inst. 53, 1487–1492.

    PubMed  Google Scholar 

  • Hibbs, J.B., Jr, Chapman, H.A., Jr, and Weinberg, J.B. (1978). The macrophage as an antineoplastic surveillance cell: biological perspectives. J. Reticuloendothel. Soc. 24, 549–570.

    PubMed  CAS  Google Scholar 

  • Hibbs, J.B., Jr, Lambert, L.H., Jr, and Remington, J.S. (1972). Possible role of macrophage mediated nonspecific cytotoxicity in tumour resistance. Nature New. Biol. 235, 48–50.

    PubMed  Google Scholar 

  • Hibbs, J.B., Jr, Taintor, R.R., Chapman, H.A., Jr, and Weinberg, J.B. (1977). Macrophage tumor killing: influence of the local environment. Science 197, 279–282.

    Article  PubMed  Google Scholar 

  • Hibbs, J.B., Jr, Taintor, R.R., Vavrin, Z., and Rachlin, E.M. (1988). Nitric oxide: a cytotoxic activated macrophage effector molecule [published erratum appears in Biochem Biophys Res Commun 1989 Jan 31;158(2):624]. Biochem. Biophys. Res. Commun. 157, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Hibbs, J.B., Jr, Vavrin, Z., and Taintor, R.R. (1987). L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138, 550–565.

    PubMed  CAS  Google Scholar 

  • Hongo, F., Garban, H., Huerta-Yepez, S., Vega, M., Jazirehi, A.R., Mizutani, Y., Miki, T., and Bonavida, B. (2005). Inhibition of the transcription factor Yin Yang 1 activity by S-nitrosation. Biochem. Biophys. Res. Commun. 336, 692–701.

    Article  PubMed  CAS  Google Scholar 

  • Huerta, S., Chilka, S., and Bonavida, B. (2008). Nitric oxide donors: Novel cancer therapeutics (Review). Int. J. Oncol. 33, 909–927.

    PubMed  CAS  Google Scholar 

  • Jahrsdorfer, B., Muhlenhoff, L., Blackwell, S.E., Wagner, M., Poeck, H., Hartmann, E., Jox, R., Giese, T., Emmerich, B., Endres, S., Weiner, G.J., and Hartmann, G. (2005). B-Cell Lymphomas Differ in their Responsiveness to CpG Oligodeoxynucleotides. Clin. Cancer Res. 11, 1490–1499.

    Article  PubMed  CAS  Google Scholar 

  • Jeannin, J.F., Leon, L., Cortier, M., Sassi, N., Paul, C., and Bettaieb, A. (2008). Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 19, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Keating, M.J., Chiorazzi, N., Messmer, B., Damle, R.N., Allen, S.L., Rai, K.R., Ferrarini, M., and Kipps, T.J. (2003). Biology and treatment of chronic lymphocytic leukemia. Hematology (Am Soc Hematol Educ Program) 153–175.

    Google Scholar 

  • Kim, J.W. and Kim, C. (2005). Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem. Pharmacol. 70, 1352–1360.

    Google Scholar 

  • King, D., Pringle, J.H., Hutchinson, M., and Cohen, G.M. (1998). Processing/activation of caspases, -3 and -7 and -8 but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells. Leukemia 12, 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kitada, S., Andersen, J., Akar, S., Zapata, J.M., Takayama, S., Krajewski, S., Wang, H.G., Zhang, X., Bullrich, F., Croce, C.M., Rai, K., Hines, J., and Reed, J.C. (1998). Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 91, 3379–3389.

    PubMed  CAS  Google Scholar 

  • Kitagawa, M., Takahashi, M., Yamaguchi, S., Inoue, M., Ogawa, S., Hirokawa, K., and Kamiyama, R. (1999). Expression of inducible nitric oxide synthase (NOS) in bone marrow cells of myelodysplastic syndromes. Leukemia 13, 699–703.

    Article  PubMed  CAS  Google Scholar 

  • Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E.M., Raje, N., Catley, L., Li, C.Q., Trudel, L.J., Yasui, H., Vallet, S., Kutok, J.L., Chauhan, D., Mitsiades, C.S., Saavedra, J.E., Wogan, G.N., Keefer, L.K., Shami, P.J., and Anderson, K.C. (2007). JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110, 709–718.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, J.P., Kern, C., Quiney, C., Roman, V., and Billard, C. (2003). Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr. Drug Targets Cardiovasc. Haematol. Disord 3, 261–286.

    Article  PubMed  CAS  Google Scholar 

  • Krasnov, P., Michurina, T., Packer, M.A., Stasiv, Y., Nakaya, N., Moore, K.A., Drazan, K.E., and Enikolopov, G. (2008). Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis. Mol. Med. 14, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.C., Adams, D.J., Misukonis, M.A., Flowers, J., Silber, R., and Weinberg, J.B. (1998). Detection of inducible nitric oxide synthase (NOS2) mRNA, antigen and enzyme activity in leukemia cells from patients with CLL. Blood 92 (Suppl 1), 431a (abstract).

    Google Scholar 

  • Levesque, M.C., Chen, Y., Beasley, B.E., O’Loughlin C,W., Gockerman, J.P., Moore, J.O., and Weinberg, J.B. (2006). Chronic lymphocytic leukemia cell CD38 expression and inducible nitric oxide synthase expression are associated with serum IL-4 levels. Leuk. Res. 30, 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.C., Ghosh, D.K., Beasley, B.E., Chen, Y., Volkheimer, A.D., O’Loughlin, C.W., Gockerman, J.P., Moore, J.O., and Weinberg, J.B. (2008). CLL cell apoptosis induced by nitric oxide synthase inhibitors: correlation with lipid solubility and NOS1 dissociation constant. Leuk. Res. 32, 1061–1070.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M.C., Misukonis, M.A., O’Loughlin, C.W., Chen, Y., Beasley, B.E., Wilson, D.L., Adams, D.J., Silber, R., and Weinberg, J.B. (2003). IL-4 and interferon gamma regulate expression of inducible nitric oxide synthase in chronic lymphocytic leukemia cells. Leukemia 17, 442–450.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.Q., and Wogan, G.N. (2005). Nitric oxide as a modulator of apoptosis. Cancer Lett. 226, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.R., Billiar, T.R., Talanian, R.V., and Kim, Y.M. (1997). Nitric Oxide Reversibly Inhibits Seven Members Of the Caspase Family Via S-Nitrosylation. Biochem. Biophys. Res. Commun. 240, 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Tonna-DeMasi, M., Park, E., Schuller-Levis, G., and Quinn, M.R. (1998). Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res. Mol. Brain Res. 59, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Maciejewski, J.P., Selleri, C., Sato, T., Cho, H.J., Keefer, L.K., Nathan, C.F., and Young, N.S. (1995). Nitric oxide suppression of human hematopoiesis in vitro. Contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J. Clin. Invest. 96, 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Macmicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function [Review]. Annu. Rev. Immunol. 15, 323–350.

    Article  PubMed  CAS  Google Scholar 

  • Magrinat, G., Mason, S.N., Shami, P.J., and Weinberg, J.B. (1992). Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood 80, 1880–1884.

    PubMed  CAS  Google Scholar 

  • Mannick, J.B., Asano, K., Izumi, K., Kieff, E., and Stamler, J.S. (1994). Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  • Mannick, J.B., Hausladen, A., Liu, L.M., Hess, D.T., Zeng, M., Miao, Q.X., Kane, L.S., Gow, A.J., and Stamler, J.S. (1999). Fas-induced caspase denitrosylation. Science 284, 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Mannick, J.B., Miao, X.Q., and Stamler, J.S. (1997). Nitric Oxide Inhibits Fas-Induced Apoptosis. J. Biol. Chem. 272, 24125–24128.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, H.E. and Stamler, J.S. (2001). Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40, 1688–1693.

    Article  PubMed  CAS  Google Scholar 

  • Menasria F., Azebaze, A.G., Billard, C., Faussat, A.M., Nkengfack, A.E., Meyer, M., and Kolb, J.P. (2008). Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferaes. Leuk Res. 32, 1914–1926.

    Google Scholar 

  • Mendes, R.V., Martins, A.R., de Nucci, G., Murad, F., and Soares, F.A. (2001). Expression of nitric oxide synthase isoforms and nitrotyrosine immunoreactivity by B-cell non-Hodgkin’s lymphomas and multiple myeloma. Histopathology 39, 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Messmer, B.T., Messmer, D., Allen, S.L., Kolitz, J.E., Kudalkar, P., Cesar, D., Murphy, E.J., Koduru, P., Ferrarini, M., Zupo, S., Cutrona, G., Damle, R.N., Wasil, T., Rai, K.R., Hellerstein, M.K., and Chiorazzi, N. (2005). In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 115, 755–764.

    PubMed  CAS  Google Scholar 

  • Michurina, T., Krasnov, P., Balazs, A., Nakaya, N., Vasilieva, T., Kuzin, B., Khrushchov, N., Mulligan, R.C., and Enikolopov, G. (2004). Nitric oxide is a regulator of hematopoietic stem cell activity. Mol. Ther. 10, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Mohr S., McCormick, T.S., and Lapetina, E.G. (1998). Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors – dichotomous apoptotic response independent of caspase 3 and reversal by the Mitogen-Activated protein kinase kinase (Mek) inhibitor Pd 098059. Proc Natl Acad Sci USA 95, 5045–5050.

    Google Scholar 

  • Mori, N., Nunokawa, Y., Yamada, Y., Ikeda, S., Tomonaga, M., and Yamamoto, N. (1999). Expression of human inducible nitric oxide synthase gene in T-cell lines infected with human T-cell leukemia virus type-I and primary adult T-cell leukemia cells. Blood 94, 2862–2870.

    PubMed  CAS  Google Scholar 

  • Nathan C. and Xie, Q.-W. (1994). Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269, 13725–13728.

    PubMed  CAS  Google Scholar 

  • Nathan C.F. and Hibbs, J.B., Jr. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Newton, D.C., Bevan, S.C., Choi, S., Robb, G.B., Millar, A., Wang, Y., and Marsden, P.A. (2003). Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon. J. Biol. Chem. 278, 636–644.

    Article  PubMed  CAS  Google Scholar 

  • Nicotera, P., Brune, B., and Bagetta, G. (1997). Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol. Sci. 18, 189–190.

    Article  PubMed  CAS  Google Scholar 

  • Ochoa, A.C., Zea, A.H., Hernandez, C., and Rodriguez, P.C. (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13, 721s–726s.

    Article  Google Scholar 

  • Ouaaz, F., Sola, B., Issaly, F., Kolb, J.P., Davi, F., Mentz, F., Arock, M., Paul-Eugene, N., Korner, M., Dugas, B., and et al. (1994). Growth arrest and terminal differentiation of leukemic myelomonocytic cells induced through ligation of surface CD23 antigen. Blood 84, 3095–3104.

    PubMed  CAS  Google Scholar 

  • Pacher, P., Beckman, J.S., and Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424.

    Article  PubMed  CAS  Google Scholar 

  • Punjabi, C.J., Laskin, D.L., Heck, D.E., and Laskin, J.D. (1992). Production of nitric oxide by murine bone marrow cells. Inverse correlation with cellular proliferation. J. Immunol. 149, 2179.

    PubMed  CAS  Google Scholar 

  • Quiney C., Dauzonne, D., Kern, C., Fourneron, J.D., Izard, J.C., Mohammad, R.M., Kolb, J.P., and Billard, C. (2004). Flavones and polyphenols inhibit the NO pathway during apoptosis of leukemia B-cells. Leuk Res. 28, 851–861.

    Google Scholar 

  • Reiling, N., Kroncke, R., Ulmer, A.J., Gerdes, J., Flad, H.D., and Hauschildt, S. (1996). Nitric oxide synthase: expression of the endothelial, Ca2+/calmodulin-dependent isoform in human B and T lymphocytes. Eur. J. Immunol. 26, 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Z., Kar, S., Wang, Z., Wang, M., Saavedra, J.E., and Carr, B.I. (2003). JS-K, a novel non-ionic diazeniumdiolate derivative, inhibits Hep 3B hepatoma cell growth and induces c-Jun phosphorylation via multiple MAP kinase pathways. J. Cell Physiol. 197, 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Roman, V., Dugas, N., Abadie, A., Amirand, C., Zhao, H., Dugas, B., and Kolb, J.P. (1997). Characterization Of a Constitutive Type III Nitric Oxide Synthase In Human U937 Monocytic Cells – Stimulation By Soluble CD23. Immunology 91, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Roman, V., Zhao, H., Fourneau, J.M., Marconi, A., Dugas, N., Dugas, B., Sigaux, F., and Kolb, J.P. (2000). Expression of a functional inducible nitric oxide synthase in hairy cell leukaemia and ESKOL cell line. Leukemia 14, 696–705.

    Article  PubMed  CAS  Google Scholar 

  • Roman V., Billard, C., Kern, C., Ferry-Dumazet, H., Izard, J.C., Mohammad, R., Mossalayi, D.M., and Kolb, J.P. (2002). Analysis of resveratrol-induced apoptosis in human B-cell chronic leukaemia. Br J Haematol. 117, 842–851.

    Google Scholar 

  • Saavedra J.E., Shami, P.J., Wang, L.Y., Davies, K.M., Booth, M.N., Citro, M.L., and Keefer, L.K. (2000). Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: in vitro antileukemic activity. J. Med. Chem. 43, 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H.H., Hofmann, H., and Ogilvie, P. (1995). Regulation and dysregulation of constitutive nitric oxide synthases types I and III. Curr. Top Microbiol. Immunol. 196, 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Shami, P.J., Moore, J.O., Gockerman, J.P., Hathorn, J.W., Misukonis, M.A., and Weinberg, J.B. (1995). Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells. Leuk. Res. 19, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Bonifant, C.L., Chu, J., Udupi, V., Malaviya, S., Carr, B.I., Kar, S., Wang, M., Jia, L., Ji, X., and Keefer, L.K. (2006). Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J. Med. Chem. 49, 4356–4366.

    Article  PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Wang, L.Y., Bonifant, C.L., Diwan, B.A., Singh, S.V., Gu, Y., Fox, S.D., Buzard, G.S., Citro, M.L., Waterhouse, D.J., Davies, K.M., Ji, X., and Keefer, L.K. (2003). JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol. Cancer Ther. 2, 409–417.

    PubMed  CAS  Google Scholar 

  • Shami, P.J., Sauls, D.L., and Weinberg, J.B. (1998). Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide. Leukemia 12, 1461–1466.

    Article  PubMed  CAS  Google Scholar 

  • Shami, P.J. and Weinberg, J.B. (1996). Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34(+) human bone marrow cells. Blood 87, 977–982.

    PubMed  CAS  Google Scholar 

  • Sonoki, T., Matsuzaki, H., Nagasaki, A., Hata, H., Yoshida, M., Matsuoka, M., Kuribayashi, N., Kimura, T., Harada, N., Takatsuki, K., Mitsuya, H., and Mori, M. (1999). Detection of inducible nitric oxide synthase (iNOS) mRNA by RT-PCR in ATL patients and HTLV-I infected cell lines: clinical features and apoptosis by NOS inhibitor. Leukemia 13, 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Spaner, D.E., Shi, Y., White, D., Mena, J., Hammond, C., Tomic, J., He, L., Tomai, M.A., Miller, R.L., Booth, J., and Radvanyi, L. (2006). Immunomodulatory effects of Toll-like receptor-7 activation on chronic lymphocytic leukemia cells. Leukemia 20, 286–295.

    Article  PubMed  CAS  Google Scholar 

  • Stamler J.S., Singel, D.J., and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox-activated forms. [Review]. Science 258, 1898–1902.

    Google Scholar 

  • Stuehr, D.J. and Nathan, C.F. (1989). Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 169, 1543–1555.

    Article  PubMed  CAS  Google Scholar 

  • Tepper, S.J., Rapoport, A., and Sheftell, F. (2001). The pathophysiology of migraine. Neurology 7, 279–286.

    Article  CAS  Google Scholar 

  • Thippeswamy, T., McKay, J.S., and Morris, R. (2001). Bax and caspases are inhibited by endogenous nitric oxide in dorsal root ganglion neurons in vitro. Eur. J. Neurosci. 14, 1229–1236.

    Article  PubMed  CAS  Google Scholar 

  • Thomas D.D., Ridnour, L.A., Isenberg, J.S., Flores-Santana, W., Switzer, C.H., Donzellie, S., Hussain, P., Vecoli, C., Paolocci, N., Ambs, S., Colton, C., Harris, C., Roberts, D.D., and Wink, D.A. (2008). The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45, 18–31.

    Google Scholar 

  • Udupi, V., Yu, M., Malaviya, S., Saavedra, J.E., and Shami, P.J. (2006). JS-K, a nitric oxide prodrug, induces cytochrome c release and caspase activation in HL-60 myeloid leukemia cells. Leuk. Res. 30, 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  • Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q.W., and Nathan, C. (1993). Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J. Exp. Med. 178, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Newton, D.C., and Marsden, P.A. (1999a). Neuronal NOS: gene structure, mRNA diversity, and functional relevance. Crit. Rev. Neurobiol. 13, 21–43.

    PubMed  Google Scholar 

  • Wang, Y., Newton, D.C., Miller, T.L., Teichert, A.M., Phillips, M.J., Davidoff, M.S., and Marsden, P.A. (2002). An alternative promoter of the human neuronal nitric oxide synthase gene is expressed specifically in Leydig cells. Am. J. Pathol. 160, 369–380.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Newton, D.C., Robb, G.B., Kau, C.L., Miller, T.L., Cheung, A.H., Hall, A.V., VanDamme, S., Wilcox, J.N., and Marsden, P.A. (1999b). RNA diversity has profound effects on the translation of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA 96, 12150–12155.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, J.B. (1999). Human mononuclear phagocyte nitric oxide production and inducible nitric oxide synthase expression. In: Fang, G. (Ed.), Nitric oxide and infection (pp. 95–150). Kluwer Academic/Plenum Publishing, New York.

    Google Scholar 

  • Weinberg J.B. (1998). Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Molecular Med. 4, 577–591.

    Google Scholar 

  • Weinberg, J.B. and Hibbs, J.B., Jr. (1977). Endocytosis of red blood cells or haemoglobin by activated macrophages inhibits their tumoricidal effect. Nature 269, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Yip, K.W. and Reed, J.C. (2008). Bcl-2 family proteins and cancer. Oncogene 27, 6398–6406.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H.X., Dugas, N., Mathiot, C., Delmer, A., Dugas, B., Sigaux, F., and Kolb, J.P. (1998). B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity. Blood 92, 1031–1043.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brice Weinberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Weinberg, J.B. (2010). Nitric Oxide and Life or Death of Human Leukemia Cells. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics