Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 27))

Anoxygenic phototrophic sulfur bacteria florish where light reaches sulfidic water layers or sediments. Their often dense communities have continuously attracted the attention of microbiologists. Although the major fraction of the existing diversity of phototrophic sulfur bacteria remains to be explored, ecophysiological studies have revealed a number of selective factors which govern the growth and the survival of phototrophic sulfur bacteria in the environment. Some novel aspects of the ecology of phototrophic sulfur bacteria have become apparent recently. Representing the most extremely low-light adapted photosynthetic organisms known to date, a brown-colored Chlorobium strain colonizes the chemocline of the Black Sea and is capable of maintaining a stable population at 0.0007% of surface light intensity. Besides the light intensity, the spectral composition of ambient light is a selective factor for the composition of anoxygenic phototrophic communities. A strong competition for infrared light occurs in laminated microbial benthic mats where phototrophic sulfur bacteria occupy their niches according to their long wavelength absorption properties. During evolution this apparently has led to the formation of a novel type of pigment-protein complex which was recently detected in a benthic Chromatiaceae species. Thirdly, the capability to establish a highly specialized symbiosis with motile Proteobacteria enabled some species of green sulfur bacteria to acquire motility. In these phototrophic consortia, a rapid signal transfer exists between the two partners and permits a scotophobic response toward light required by the immotile green sulfur bacterial epibiont. The isolation and characterization of dominant species of phototrophic sulfur bacteria and an improved understanding of their particular niche has also implications for the interpretation of molecular fossils of these bacteria which have been detected in sedimentary rocks of all geological eras and interpreted as evidence for the existence of extended oceanic anoxia in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anbar AD and Knoll AH (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297: 1137–1142

    PubMed  CAS  Google Scholar 

  • Armitage JP (1997) Behavioral responses of bacteria to light and oxygen. Arch Microbiol 168: 249–261

    PubMed  CAS  Google Scholar 

  • Barber CJ, Grice K and Alexander R (2003) Biomarkers for Paleoenvironmental conditions of Devonian source rock deposition in the Canning Basin (Western Australia) and Western Canadian Basin. 21st International Meeting on Organic Geochemistry, Book of Abstracts, Part II, PI/160

    Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süss- und Salzwassers. Verlag Gustav Fischer, Jena

    Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA and Plumley GF (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102: 9306–9310

    PubMed  CAS  Google Scholar 

  • Bergstein T, Henis Y and Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol 25: 999–1007

    PubMed  CAS  Google Scholar 

  • Bergstein T, Henis Y and Cavari BZ (1981) Uptake and metabolism of organic compounds by Chlorobium phaeobacteroides isolated from Lake Kinneret. Can J Microbiol 27: 1087–1091

    CAS  Google Scholar 

  • Borrego CM and Garcia-Gil LJ (1995) Rearrangement of light harvesting bacteriochlorophyll homologs as a response of green sulfur bacteria to low light intensities. Photosynth Res 41: 53–65

    Google Scholar 

  • Bowden SA, Farrimond P, Snape CE and Love GD (2006) Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogene fractions: An example from the Jet Rock (Yorkshire, UK). Org Geochem 37: 369–383

    CAS  Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA and Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437: 866–870

    PubMed  CAS  Google Scholar 

  • Brown TC and Kenig F (2004) Water column structure during deposition of Middle Devonian-Lower Mississippian black and Green/gray shales of the Illinois and Michigan Basins: a biomarker approach. Palaeogeogr Palaeoclimatol Palaeoecol 215: 59–85

    Google Scholar 

  • Brune DC (1989) Sulfur oxidation by phototrophic bacteria. Biochim Biophys Acta 975: 189–221

    PubMed  CAS  Google Scholar 

  • Castenholz RW and Pierson BK (1995) Ecology of thermophilic anoxygenic phototrophs. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis, Vol II, pp 87–103. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Castenholz RW, Bauld J and Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74: 325–336

    CAS  Google Scholar 

  • Clark KJ, Finlay BJ, Vicente E, Lloréns H and Miracle MR (1993) The complex life-cycle of a polymorphic prokaryote epibiont of the photosynthetic bacterium Chromatium weissei. Arch Microbiol 159: 498–505

    Google Scholar 

  • Clifford DJ, Clayton JL and Sinninghe-Damsté JS (1998) 2, 3, 6-/ 3, 4, 5-trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin. Org Geochem 29: 1253–1267

    CAS  Google Scholar 

  • Codispoti LA, Friederich GE, Murray JW and Sakamoto CM (1991) Chemical variability in the Black Sea: implications of continuous vertical profiles that penetrated the oxic/anoxic interface. Deep Sea Res 38 (suppl. 2): S691–S710

    Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM and Tiedje JM (2006) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research; doi: 10.1093/nar/gkl889

    Google Scholar 

  • Coolen MJL and Overmann J (1998) Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64: 4513–4521

    PubMed  CAS  Google Scholar 

  • Coolen MJL and Overmann J (2007) 217, 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9: 238–249

    PubMed  CAS  Google Scholar 

  • Crecchio C and Stotzky G (1998) Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to Dnase. Soil Biol Biochem 30: 1061–1067

    CAS  Google Scholar 

  • Degens ET and Stoffers P (1976) Stratified waters as a key to the past. Nature 263: 22–27

    CAS  Google Scholar 

  • Drews G and Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic photosynthetic bacteria, Advances in Photosynthesis, Vol II, pp 231–257. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • Ehrenberg CG (1838) Die Infusionstierchen als vollkommene Organismen. Leipzig, 2 vol

    Google Scholar 

  • Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR and Krumholz LE (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69: 5609–5621

    PubMed  CAS  Google Scholar 

  • Engelmann TW (1888) Die Purpurbakterien und ihre Beziehung zum Licht. Bot Z 46: 661–669

    Google Scholar 

  • Erba E (2004) Calcareous nannofossils and Mesozoic oceanic anoxic events. Mar Micropaleontol 52: 85–106

    Google Scholar 

  • Frigaard N-U, Chew AGM, Li H, Maresca JA and Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78: 93–117

    PubMed  CAS  Google Scholar 

  • Fröstl JM and Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169: 129–135

    PubMed  Google Scholar 

  • Fröstl JM and Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174: 50–58

    PubMed  Google Scholar 

  • Fuhrmann S, Overmann J, Pfennig N and Fischer U (1993) Influence of vitamin B12 and light on the formation of chlorosomes in green- and brown-colored Chlorobium species. Arch Microbiol 16: 193–198

    Google Scholar 

  • Garcia-Cantizano J, Casamayor EO, Gasol JM, Guerrero R and Pedros-Alio (2005) Partitioning of CO2 incorporation among planktonic microbial guilds and estimation of in situ specific growth rates. Microb Ecol 50: 230–241

    PubMed  Google Scholar 

  • Glaeser J and Overmann J (1999) Selective enrichment and characterization of Roseospirillum parvum, gen. nov and sp nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 171: 405–416

    PubMed  CAS  Google Scholar 

  • Glaeser J and Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69: 3739–3750

    PubMed  CAS  Google Scholar 

  • Glaeser J and Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5: 1053–1063

    PubMed  CAS  Google Scholar 

  • Glaeser J and Overmann J (2004) Biogeography, evolution and diversity of the epibionts in phototrophic consortia. Appl Environ Microbiol 70: 4821–4830

    PubMed  CAS  Google Scholar 

  • Glaeser J, Baneras L, Rütters H and Overmann J (2002) Novel bacteriochlorophyll e structures and species-specific variability of pigment composition in green sulfur bacteria. Arch Microbiol 177: 475–485

    PubMed  CAS  Google Scholar 

  • Göbel F (1978) Quantum efficiencies of growth. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 907–925. Plenum, New York

    Google Scholar 

  • Gorlenko VM (1988) Ecological niches of green sulfur bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp 257–267. Plenum, New York, London

    Google Scholar 

  • Grice K, Gibbison R, Atkinson JE, Schwark L, Eckhardt CB and Maxwell JR (1996) Maleimides (1H-pyrrole-2, 5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochim Cosmochim Acta 60: 3913–3924

    CAS  Google Scholar 

  • Guerrero R, Esteve I, Pedros-Alio C and Gaju N (1987a) Predatory bacteria in prokaryotic communities. The earliest trophic relationship. Ann NY Acad Sci 503: 238–250

    Google Scholar 

  • Guerrero R, Pedrós-Alió C, Esteve I and Mas J (1987b) Communities of phototrophic bacteria in lakes of the Spanish Mediterranean region. Acta Acad Aboensis 47: 125–151

    Google Scholar 

  • Hartgers WA, Sinninghe Damsté JS, Requejo AG, Allan J, Hayes JM and de Leeuw JW (1994) Evidence for only minor contributions from bacteria to sedimentary organic carbon. Nature 369: 224–227

    PubMed  CAS  Google Scholar 

  • Hebting Y, Schaeffer P, Behrens A, Adam P, Schmitt G, Schneckenburger P, Bernasconi SM and Albrecht P (2006) Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science 312: 1627–1631

    PubMed  CAS  Google Scholar 

  • Herbert RA, Ranchou-Peyruse A, Duran R, Guyoneaud R and Schwabe S (2005) Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa. Environ Microbiol 7: 1260–1268

    PubMed  CAS  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53: 941–951

    PubMed  CAS  Google Scholar 

  • Imhoff JF (2005a) Family I. Chromatiaceae. In: Garrity JM (ed) Bergey’s Manual of Systematic Bacteriology, Vol 2B, pp 3–40. Williams and Wilkins, Baltimore

    Google Scholar 

  • Imhoff JF (2005b) Family II. Ectothiorhodospiraceae. In: Garrity JM (ed) Bergey’s Manual of Systematic Bacteriology, Vol 2B, pp 41–48. Williams and Wilkins, Baltimore

    Google Scholar 

  • Joachimski MM, Ostertag-Henning C, Pancost RD, Strauss H, Freeman KH, Littke R, Sinninghe Damsté JS and Racki G (2001) Water column anoxia, enhanced productivity and concomitant changes in δ13C and δ34S across the Frasnian–Famennian boundary (Kowala Holy Cross Mountains/Poland). Chem Geol 175: 109–131

    CAS  Google Scholar 

  • Jørgensen BB, Fossing H, Wirsen CO and Jannasch HW (1991) Sulfide oxidation in the Black Sea chemocline. Deep-Sea Res 38 (Suppl): S1083–S1103

    Google Scholar 

  • Kanzler BEM, Pfannes KR, Vogl K and Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71: 7434–7441

    PubMed  CAS  Google Scholar 

  • Kara AN, Rochford PA and Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108: 3079 (doi:10.1029/2000JC000736)

    Google Scholar 

  • Kohnen MEL, Sinninghe Damsté JS and DeLeeuw JW (1991) Biases from natural sulphurization in palaeoenvironmental reconstruction based on hydrocarbon biomarker distribution. Nature 349: 775–778

    CAS  Google Scholar 

  • Koizumi Y, Kojima H, Oguri K, Kitazato H and Fukui M (2004) Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based anmalysis, and related to physicochemical gradients. Environ Microbiol 6: 622–637

    PubMed  CAS  Google Scholar 

  • Kondratieva EN (1965) Photosynthetic Bacteria. Akademiya Nauk SSSR Institut Mikrobiologii. S. Monson, Jerusalem

    Google Scholar 

  • Konovalov SK, Ivanov LI and Samodurov AS (2001) Fluxes and budgets of sulphide and ammonia in the Black Sea anoxic layer. J Mar Syst 31: 203–216

    Google Scholar 

  • Konovalov SK, Luther GW, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, Oguz T, Glazer B, Trouwborst RE, Clement B, Murray KJ and Romanov AS (2003) Lateral injection of oxygen with the Bosporus plume – fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 48: 2369–2376

    Article  CAS  Google Scholar 

  • Koopmans MP, Schouten S, Kohnen MEL and Sinninghe Damsté JS (1996a) Restricted utility of aryl isoprenoids as indicators for photic zone anoxia. Geochim Cosmochim Acta 60: 4873–4876

    CAS  Google Scholar 

  • Koopmans MP, Köster J, van Kaam-Peters HME, Kenig F, Schouten S, Hartgers WA, de Leeuw JW and Sinninghe Damsté JS (1996b) Diagenetic and catagenic products of isorenieratene: Molecular indicators for photic zone anoxia. Geochim Cosmochim Acta 60: 4467–4496

    CAS  Google Scholar 

  • Krubasik P and Sandmann G (2000) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263: 423–432

    PubMed  CAS  Google Scholar 

  • Krügel H, Krubasik P, Weber K, Saluz HP and Sandmann G (1999) Functional analysis of genes from Streptomyces griseus involved in the synthesis of isorenieratene, a carotenoid with aromatic end groups, revealed a novel type of carotenoid desaturase. Biochim Biophys Acta 1439: 57–64

    PubMed  Google Scholar 

  • Kühl M and Jørgensen BB (1992) Spectral light measurements in microbenthic phototrophic communities with a fibre-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37: 1813–1823

    Article  Google Scholar 

  • Kühl M, Lassen C and Jørgensen BB (1994) Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes. Mar Ecol Prog Ser 105, 139–148

    Google Scholar 

  • Kuypers MMM, Pancost RD, Nijenhuis IA and Sinninghe Damsté JS (2002) Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17: 1051 (doi:10.1029/2000PA000569)

    Google Scholar 

  • Kuypers MMM, Lourens LJ, Rijpstra IC, Pancost RD, Nijenhuis IA and Sinninghe Damsté JS (2004) Orbital forcing of organic carbon burial in the proto-North Atlantic durign oceanic anoxic event 2. Earth Planet Sci Lett 228: 465–482

    CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715

    PubMed  CAS  Google Scholar 

  • Manske AK, Glaeser J, Kuypers MMM and Overmann J (2005) Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at 100 m depth in the Black Sea. Appl Environ Microbiol 71: 8049–8060

    PubMed  CAS  Google Scholar 

  • Manske AK, Henßge U, Glaeser J, Overmann J (2008) Subfossil 16S rRNA gene sequences of green sulfur bacteria as biomarkers for photic zone anoxia in the ancient Black Sea. Appl Environ Microbiol (in press)

    Google Scholar 

  • Martínez-Alonso M, Van Bleijswijk J, Gaju N and Muyzer G (2005) Diversity of anoxygenic phototrophic sulfur bacteria in the microbial mats of Ebro Delta: a combined morphological and molecular approach. FEMS Microbiol Ecol 52: 339–350

    PubMed  Google Scholar 

  • Menzel D, Hopmans EC, van Bergen PF, de Leeuw JW and Sinninghe Damsté JS (2002) Development of photic zone euxinia in the eastern Mediterranean basin during deposition of pliocene sapropels. Mar Geol 189: 215–226

    CAS  Google Scholar 

  • Montesinos E, Guerrero R, Abella C and Esteve I (1983) Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats. Appl Environ Microbiol 46: 1007–1016

    PubMed  CAS  Google Scholar 

  • Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, Friederich GE, Codispoti LA and Izdar E (1989) Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338: 411–413

    CAS  Google Scholar 

  • Nicholson JAM, Stolz JF and Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Google Scholar 

  • Okubo Y, Futamata H and Hiraishi A (2006) Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl Environ Microbiol 72: 6225–6233

    PubMed  CAS  Google Scholar 

  • Overmann J (1997) Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria. Adv Microbial Ecol 15: 251–288

    CAS  Google Scholar 

  • Overmann J (2001) Green sulfur bacteria. In Garrity JM (ed) Bergey’s Manual of Systematic Bacteriology, Vol 1, pp 601–623. Williams and Wilkins, Baltimore

    Google Scholar 

  • Overmann J (2006) The symbiosis between nonrelated bacteria in phototrophic consortia. Chapter II. In: Overmann J (ed) Molecular Basis of Symbiosis. Progress in Molecular Subcellular Biology, pp 21–37. Springer, Berlin, Heidelberg

    Google Scholar 

  • Overmann J and Garcia-Pichel F (2000) The phototrophic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition (latest update release 3.11, September 2002), Springer, New York, 2000 (http://ep.springer-ny.com:6336/contents/)

  • Overmann J and Manske A (2006) Anoxygenic phototrophic bacteria in the Black Sea chemocline. In: Neretin L (ed) Past and Present Water Column Anoxia. NATO ASI series, pp 543–561. Springer, Berlin

    Google Scholar 

  • Overmann J and Pfennig N (1992) Buoyancy regulation and aggregate formation in Amoebobacter purpureus from Mahoney Lake. FEMS Microbiol Ecol 101: 67–79

    CAS  Google Scholar 

  • Overmann J and Schubert K (2002) Phototrophic consortia: model systems for symbiotic interrelations between prokaryotes. Arch Microbiol 177: 201–208

    PubMed  CAS  Google Scholar 

  • Overmann J and Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167: 302–309

    PubMed  CAS  Google Scholar 

  • Overmann J, Beatty JT, Hall KJ, Pfennig N and Northcote TG (1991a) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol Oceanogr 36: 846–859

    Article  CAS  Google Scholar 

  • Overmann J, Lehmann S and Pfennig N (1991b) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157: 29–37

    CAS  Google Scholar 

  • Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155

    Article  CAS  Google Scholar 

  • Overmann J, Beatty JT and Hall KJ (1994) Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake. FEMS Microbiol Ecol 15: 309–320

    CAS  Google Scholar 

  • Overmann J, Beatty JT and Hall KJ (1996) Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake. Appl Environ Microbiol 62: 3251–3258

    PubMed  CAS  Google Scholar 

  • Overmann J, Coolen MJL and Tuschak C (1999a) Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Arch Microbiol 172: 83–94

    PubMed  CAS  Google Scholar 

  • Overmann J, Hall KJ, Northcote TG and Beatty JT (1999b) Grazing of the copepod Diaptomus connexus on purple sulfur bacteria in a meromictic salt lake. Environ Microbiol 1: 213–222

    PubMed  CAS  Google Scholar 

  • Overmann J, Hall KJ, Northcote TG, Ebenhöh W, Chapman MA and Beatty JT (1999c) Structure of the aerobic food chain in a meromictic lake dominated by purple sulfur bacteria. Arch Hydrobiol 144: 127–156

    Google Scholar 

  • Pancost RD, Freeman KH, Patzkowsky E, Wavrek DA and Collister JW (1998) Molecular indicators of redox and marine photoautotroph composition in the late Middle Ordovivian of Iowa, U.S.A. Org Geochem 29: 1649–1662

    CAS  Google Scholar 

  • Pancost RD, Crawford N, Magness S, Turner A, Jenkyns HC and Maxwell JR (2004) Further evidence for the development of photic-zone euxinic conditions during Mesozoic oceanic anoxic events. J Geol Soc London 161: 353–364

    CAS  Google Scholar 

  • Parkin TB and Brock TD (1980a) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25: 711–718

    Article  Google Scholar 

  • Parkin TB and Brock TD (1980b) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125: 19–27

    CAS  Google Scholar 

  • Passier HF, Bosch H-J, Nijenhuis LJL, Böttcher ME, Leenders A, Sinninghe Damsté JS, de Lange GJ and de Leeuw JW (1999) Sulphidic Mediterranean surface waters during Pliocene sapropel formation. Nature 397: 146–149

    CAS  Google Scholar 

  • Pedrós-Alió C and Sala MM (1990) Microdistribution and diel vertical migration of flagellated vs. gas-vacuolate purple sulfur bacteria in a stratified water body. Limnol Oceanogr 35: 1637–1644

    Article  Google Scholar 

  • Permentier HP, Neerken S, Overmann J and Amesz J (2001) A bacteriochlorophyll a antenna complex from purple bacteria absorbing at 963 nm. Biochemistry 40: 5573–5578

    PubMed  CAS  Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 3–18. Plenum, New York

    Google Scholar 

  • Pfennig N (1993) Reflections of a microbiologist, or how to learn from the microbes. Annu Rev Microbiol 47: 1–29

    PubMed  CAS  Google Scholar 

  • Pfennig N, Lünsdorf H, Süling J and Imhoff JF (1997) Rhodospira trueperi gen. nov., spec. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168: 39–45

    PubMed  CAS  Google Scholar 

  • Pierson B, Oesterle A and Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts. FEMS Microbiol Ecol 45: 365–376

    CAS  Google Scholar 

  • Poinar HN, Höss M, Bada JL and Pääbo S (1996) Amino acid racemization and the preservation of ancient DNA. Science 272: 864–866

    PubMed  CAS  Google Scholar 

  • Repeta DJ (1993) A high resolution historical record of Holocene anoxygenic primary production in the Black Sea. Geochim Cosmochim Acta 57: 4337–4342

    CAS  Google Scholar 

  • Repeta DJ, Simpson DJ, Jørgensen BB and Jannasch HW (1989) Evidence for anoxygenic photosynthesis from the distribution of bacterichlorophylls in the Black Sea. Nature 342: 69–72

    PubMed  CAS  Google Scholar 

  • Requejo AG, Allan J, Creaney S, Gray NR and Cole KS (1992) Aryl isoprenoids and aromatic carotenoids in Paleozoic rocks and oils from the Western Canada and Williston Basins. Org Geochem 19: 245–264

    CAS  Google Scholar 

  • Rohling EJ and Hilgen FJ (1991) The eastern Mediterranean climate at times of sapropel formation: a review. Geol Mijnbouw 70: 253–264

    Google Scholar 

  • Rohling EJ, Hopmans EC and Sinninghe Damsté JS (2006) Water column dynamics during the last interglacial anoxic event in the Mediterranean (sapropel S5). Paleoceanography 21: PA2018, doi:10.1029/ 2005PA001237

    Google Scholar 

  • Romanowski G, Lorenz MG and Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against Dnase I. Appl Environ Microbiol 57: 1057–1061

    PubMed  CAS  Google Scholar 

  • Ross DA and Degens ET (1974) In: Degens E and Ross D (eds), The Black Sea – Geology, Chemistry and Biology, pp 183–199 (Memoir No. 20. Am Ass. Petrol. Geol., Tulsa, Oklahoma)

    Google Scholar 

  • Rossignol-Strick M (1985) Mediterranean Quaternary sapropels, an inmediate response of the African Monsoon to variation of insolation. Paleogeogr Paleoclimatol Paleoecol 49: 237–263

    Google Scholar 

  • Sanchez O, van Gemerden and Mas J (1998) Acclimation of the photosynthetic response of Chromatium vinosum to light-limiting conditions. Arch Microbiol 170: 405–410

    PubMed  CAS  Google Scholar 

  • Schulz H-M, Sachsenhofer RF, Bechtel A, Polesny H and Wagner L (2002) The origin and hydrocarbon source rocks in the Austrian Molasse Basin (Eocene–Oligocene transition). Mar Petrol Geol 19: 683–709

    CAS  Google Scholar 

  • Simons D-JH and Kenig F (2001) Molecular fossil constraints on the water column structure of the Cenomanian–Turonian Western Interior Seaway, USA. Palaeogr Palaeoclimatol Palaeoecol 169: 129–152

    Google Scholar 

  • Sinninghe Damsté JS, Wakeham SG, Kohnen MEL, Hayes JM and de Leeuw JW (1993) A 6, 000-year sedimentary molecular record of chemocline excursion in the Black Sea. Nature 362: 827–829

    PubMed  Google Scholar 

  • Sinninghe Damsté JS, Frewin NL, Kenig F and de Leeuw JW (1995) Molecular indictaors for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). I: Variations in extractable organic matter of ten cyclically deposited marl beds. Org Geochem 23: 471–483

    Google Scholar 

  • Sorokin YuI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66: 391–446

    Google Scholar 

  • Sorokin YuI (2002) The Black Sea. Ecology and oceanography. Backhuys, Leiden, The Netherlands

    Google Scholar 

  • Steensgaard DB, Wackerbarth H, Hildebrandt P and Holzwarth AR (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 31-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104: 10379–10386

    CAS  Google Scholar 

  • Thar R and Kühl M (2001) Motility of Marichromatium gracile in response to light, oxygen, and sulfide. Appl Environ Microbiol 67: 5410–5419

    PubMed  CAS  Google Scholar 

  • Tonolla M, Demarta A, Peduzzi S, Hahn D and Peduzzi R (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66: 820–824

    PubMed  CAS  Google Scholar 

  • Tonolla M, Peduzzi R and Hahn D (2005) Long-term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Appl Environ Microbiol 71: 3544–3550

    PubMed  CAS  Google Scholar 

  • Tuschak C, Glaeser J and Overmann J (1999) Specific detection of green sulfur bacteria by in situ-hybridization with a fluorescently labeled oligonucleotide probe. Arch Microbiol 171: 265–272

    PubMed  CAS  Google Scholar 

  • van den Ende FP, Laverman AM and van Gemerden H (1996) Coexistence of aerobic chemotrophic and anaerobiv phototrophic sulfur bacteria under oxygen limitation. FEMS Microbiol Ecol 19: 141–151

    Google Scholar 

  • Van Dover CL, Reynolds GT, Chave AD and Ryson JA (1996) Light at deep-sea hydrothermal vents. Geophys Res Lett 23: 2049–2052

    Google Scholar 

  • van Gemerden H and Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis, Vol II, pp 49–85. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • van Gemerden H, Tughan CS, De Wit R and Herbert RA (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62: 87–102

    Google Scholar 

  • van Niel (1931) On the morphology and physiology of the purple and green sulphur bacteria. Arch Microbiol 3: 1–112

    Google Scholar 

  • van Rossum B-J, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR and de Groot HJM (2001) A refinded model of the chlorosomal antennae of the green sulfur bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587–1595

    PubMed  Google Scholar 

  • Vetriani C, Tran HV and Kerkhof LJ (2003) Fingerprinting microbial assemblages from the oxic/anoxic chemocline of the Black Sea. Appl Environ Microbiol 69: 6481–6488

    PubMed  CAS  Google Scholar 

  • Vila X, Guyoneaud R, Cristina XP, Figueras JB and Abella CA (2002) Green sulfur bacteria from hypersaline Chiprana Lake (Monegros, Spain): habitat description and phylogenetic relationship of isolated strains. Photosynth Res 71: 165–172

    PubMed  CAS  Google Scholar 

  • Vogl K, Glaeser J, Pfannes KR, Wanner G and Overmann J (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185: 363–372

    PubMed  CAS  Google Scholar 

  • Wagner T, Sinninghe Damsté JS, Hofmann P and Beckmann B (2005) Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Palaeoceanography 19:PA3009

    Google Scholar 

  • Wakeham SG, Sinnighe Damsté JS, Kohnen MEL and DeLeeuw JW (1995) Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochim Cosmochim Acta 59: 521–533

    CAS  Google Scholar 

  • Warthmann R, Cypionka H and Pfennig N (1992) Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 157: 343–348

    CAS  Google Scholar 

  • Willerslev E, Hansen AJ, and Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. TRENDS Ecol Evol 19: 141–147

    PubMed  Google Scholar 

  • Winogradsky S (1887) Über Schwefelbakterien. Bot Ztg 45: 489–508

    Google Scholar 

  • Zuber H and Cogdell RJ (1995) Structure and organization of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 315–348. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Overmann, J. (2008). Ecology of Phototrophic Sulfur Bacteria. In: Hell, R., Dahl, C., Knaff, D., Leustek, T. (eds) Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6863-8_19

Download citation

Publish with us

Policies and ethics