Skip to main content

Is Oceanic Heat Transport Significant in the Climate System?

  • Chapter

It has long been believed that the transport of heat by the ocean circulation is of importance to atmospheric climate. Circulation of the Atlantic Ocean warms and moistens western Europe, the argument goes, and, because of the pivotal role of the Atlantic/Arctic region, also affects global climate (e.g., Stommel 1979). Indeed, major oceanographic field programs have been launched by many nations, based on this premise. In the US, NOAA issues quarterly assessments of subtropical North Atlantic meridional heat transport (http://www.aoml.noaa.gov/phod/soto/mht/reports/ index.php). Estimates from ocean observations show the annual-mean, northward heat transport by the global circulation to decrease by about 1.5 pW (1015W) between latitudes 25° N and 50° N, with nearly 1 pW of that within the narrow Atlantic sector alone (see Bryden and Imawaki 2001, who estimate the uncertainty of individual section heat transports at 0.3 pW). This effect of the oceanic meridional overturning forces an enormous upward flux of heat and moisture in subtropical latitudes, providing a significant fraction of the zonally integrated atmospheric northward energy flux (which peaks at between 3 and 5.2 pW, as discussed further below). Occurring dominantly in wintertime, oceanic warmth and moisture energize the Pacific and Atlantic storm tracks. Combined action of atmosphere and ocean carries this energy northward, with great impact on all facets of high-latitude climate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P-P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin and E. Nelkin (2003) The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydromet., 4: 1147–1167.

    Article  Google Scholar 

  • Bailey, D.A., P.B. Rhines and S. Häkkinen (2005) Pathways and formation of North Atlantic Deep Water in a coupled model of the Arctic-North Atlantic Oceans. Clim. Dyn., 24, doi:10. 1007/s00382–005-0050–3

    Google Scholar 

  • Biastoch, A. and R.H. Käse (2003) The sensitivity of the Greenland-Scotland Ridge overflow to forcing changes. J. Phys. Oceanogr., 33: 2307–2319.

    Article  Google Scholar 

  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira and J. Marshall (2005) The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, doi:10.1029/2005GL022474.

    Google Scholar 

  • Boyle, E. and L.D. Keigwin (1982) Deep circulation of the North Atlantic over the last 20, 000 years: geochemical evidence. Science, 218: 784–787.

    Article  Google Scholar 

  • Boyle, E. and L.D. Keigwin (1987) North Atlantic thermohaline circulation during the past 20, 000 years linked to high latitude surface temperature. Nature, 334: 333–335.

    Google Scholar 

  • Bryden, H. and S. Imawaki (2001) Ocean heat transport. In Ocean Circulation and Climate, Siedler, Church and Gould (Eds.). Academic Press, London; 455–474.

    Chapter  Google Scholar 

  • Bunker, A.F. (1976) Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104: 1122–1140.

    Article  Google Scholar 

  • Cronin, M.F., N.A. Bond, Fairall, C.W. and R.A. Weller (2006) Surface cloud forcing in the East Pacific stratus deck/cold tongue/ITCZ complex. J. Clim., 19(3): 392–409.

    Article  Google Scholar 

  • Curry, R., B. Dickson and I. Yashayaev (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426: 826–829.

    Article  Google Scholar 

  • da Silva, A.M., C.C. Young and S. Levitus (1994) Atlas of Surface Marine Data Vol. 1: Algorithms and Procedures. NOAA Atlas series, pp. 74.

    Google Scholar 

  • Dickson, R.R., T.J. Osborn, J.W. Hurrell, J. Meincke, J. Blindheim, B. Adlandsvik, T. Vinje, G. Alekseev and W. Maslowski (2000) The Arctic Ocean response to the North Atlantic Oscillation. J. Clim., 13: 2671–2696.

    Article  Google Scholar 

  • Dong, B. and R.T. Sutton (2005) Mechanism of interdecdal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Clim., 18: 1117–1135.

    Article  Google Scholar 

  • Fairall, C.W., E.F. Bradley, J.E. Hare, A.A. Grachev and J.B. Edson (2003) Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim., 16(4): 571–591.

    Article  Google Scholar 

  • Fox, A.D. and K. Haines (2003) Interpretation of water mass formation deduced from data assimilation. J.Clim., 33: 485–498.

    Google Scholar 

  • Grist, J.P. and S.A. Josey (2003) Inverse analysis of the SOC air-sea flux climatology using ocean heat transport constraints, J. Clim., 16: 3274–3295.

    Article  Google Scholar 

  • Grist, J.P., S.A. Josey and B. Sinha (2007) Impact on the ocean of extreme Greenland Sea heat loss in the HadCM3 coupled ocean-atmosphere model. J. Geophys. Res., 112, C04014, doi:10.1029/2006JC003629.

    Article  Google Scholar 

  • Gulev, S., T. Jung and E. Ruprecht (2007) Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I: uncertainties in climate means. J. Clim., 20: 279–301.

    Article  Google Scholar 

  • Hadfield, N.C. Wells, S.A.Josey and J. J-M Hirschi (2007) Accurac of North Atlantic temperature and heat storage fields from ARGO. J. Geophys Res., 112, C01009, doi:10.1029/2006JC003825.

    Article  Google Scholar 

  • Hall, M.M. and H.L. Bryden (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29: 339–359.

    Article  Google Scholar 

  • Häkkinen, S. and P.B. Rhines (2004) Decline of the North Atlantic subpolar circulation in the 1990s. Science, 304: 555–559.

    Article  Google Scholar 

  • Häkkinen, S., F. Dupont, M. Karcher, F. Kauker, D. Worthen J. and Zhang (2007a) Model simulation of Greenland Sea upper-ocean variability J. Geophys. Res., 112, No. C6, C06S9010.1029/2006JC003687

    Google Scholar 

  • Häkkinen, S. and P.B. Rhines (2007b) Shifting circulations in the northern Atlantic Ocean. Science, submitted.

    Google Scholar 

  • Hallberg, R. and Gnanadesekin, A. (2006) The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: results from the modeling eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36: 2232–2252.

    Article  Google Scholar 

  • Hátún, H., A.B. Sandø, H. Drange, B. Hansen and H. Valdimarsson (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309: 1841–1844.

    Article  Google Scholar 

  • Hátún, H., C.E. Eriksen, P.B. Rhines and J. Lilly (2007) Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., Dec.

    Google Scholar 

  • Held, I., M.F. Ting and H. Wang (2002) Northern stationary waves: theory and modeling. J. Clim., 15: 2125–2144.

    Article  Google Scholar 

  • Keith, D.W. (1995) Meridional energy transport: uncertainty in zonal means. Tellus, 47A: 30–44.

    Google Scholar 

  • Josey, S.A., E.C. Kent and P.K. Taylor (1999) New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J. Clim., 12(9): 2856–2880.

    Article  Google Scholar 

  • Josey, S.A. and R. Marsh (2005) Surface freshwater flux variability and recent freshening of the North Atlantic in the Eastern Subpolar Gyre. J. Geophys. Res., 110, C05008, doi:10.1029/ 2004JC002521.

    Article  Google Scholar 

  • Josey, S.A. and S.R. Smith (2006) Guidelines for Evaluation of Air-Sea Heat, Freshwater and Momentum Flux Datasets, CLIVAR Global Synthesis and Observations Panel (GSOP) White Paper, July 2006, pp. 12. Available at http://www.noc.soton.ac.uk/JRD/MET/gsopfg.pdf.

  • Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne and M. Fiorino (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Met. Soc., 82: 247–267.

    Article  Google Scholar 

  • Large, W.G. and S.G. Yeager (2004) Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note NCAR/TN-460 + STR, 111 pp.

    Google Scholar 

  • Leduc, G., L. Vidal, K. Tachikawa1, F. Rostek, C. Sonzogni, L. Beaufort and E. Bard (2007) Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature, 445, 908–911, doi:10.1038/nature05578

    Article  Google Scholar 

  • Lilly, J.M., P.B. Rhines, M. Visbeck, R. Davis, J.R.N. Lazier, F. Schott, and D. Farmer (1999) Observing deep convection in the Labrador Sea during winter, 1994–1995. J. Phys. Oceanogr., 29: 2065–2098.

    Article  Google Scholar 

  • Lilly, J.M., P.B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send and E. d’Asaro (2003) Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59: 75–176.

    Article  Google Scholar 

  • Liu, J. and J. Curry (2006) Variability of the tropical and subtropical ocean surface latent heat flux during 1989–2000. Geophys. Res. Lett., 33, doi:10.1029/2005GL023809.

    Google Scholar 

  • Levitus, S., J. Antonov and T. Boyer (2005) Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, doi:10.1029/2004GL021592

    Google Scholar 

  • Lumpkin, R. and K. Speer (2003) Large-scale vertical and horizontal circulation of the Atlantic Ocean. J. Phys. Oceanogr., 33: 1902–1920.

    Article  Google Scholar 

  • Manabe, S. and R. Stouffer (1994) Multiple century response of a coupled ocean-atmosphere model to a n increase of atmospheric carbon dioxide. J. Clim., 7: 5–23.

    Article  Google Scholar 

  • Marsh, R., S.A. Josey, A.J.G. Nurser, B.A. de Cuevas, and A.C. Coward (2006) Water mass transformation in the North Atlantic over 1985–2002 simulated in an eddy-permitting model. Ocean Sci., 1: 127–144.

    Article  Google Scholar 

  • Peterson, B.J., J. McClelland, R. Curry, R.M. Holmes, J.E. Walsh, K. Aagaard (2006) Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science, 313: 1061–1066.

    Article  Google Scholar 

  • Pickart, R.S., M.A. Spall, M.H. Ribergaard, G.W.K. Moore and R.F. Milliff (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet Nature, 424: 152–156.

    Article  Google Scholar 

  • Rhines, P.B. (2006) Sub-Arctic oceans and global climate. Weather, 61: 109–118.

    Article  Google Scholar 

  • Renfrew, I.A., G.W.K. Moore, P.S. Guest and K. Bumke (2002) A comparison of surface-layer and surface heat flux observations over the Labrador Sea with ECMWF and NCEP reanalyses. J. Phys. Oceanogr., 32: 383–400.

    Article  Google Scholar 

  • Sarmiento, J.L., N. Gruber, M. Brzezinski and J.P. Dunne (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427: 56–60.

    Article  Google Scholar 

  • Schmittner, K. (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434: 628–632.

    Article  Google Scholar 

  • Seager, R., D.S. Battisti, J. Yin, N. Gordon, N. Naik, A.C. Clement, and M.A. Cane (2002) Is the Gulf Stream responsible for Europe’s mild winters? Q. J. Roy. Met. Soc., 128: 2563–2586.

    Article  Google Scholar 

  • Stammer, D., K. Ueyoshi, A. Kohl, W.G. Large, S.A. Josey and C. Wunsch (2004) Estimating air-sea fluxes of heat, freshwater and momentum through global ocean data assimilation. J. Geophys. Res., 109, C05023, doi:10.1029/2003JC002082.

    Article  Google Scholar 

  • Stommel, H.M. (1979) Oceanic warming of western Europe. Proc. Nat. Acad. Sci., 76: 2518–2521.

    Article  Google Scholar 

  • Stommel, H.M. and G.T. Csanady (1980) A relation between the T-S curve and global heat and atmospheric water transports. J. Geophys. Res., 85: 495–501.

    Article  Google Scholar 

  • van der Swaluw, E., S.S. Drijfhout and W. Hazeleger (2007) Bjerknes compensation at high Northern latitudes: the ocean forcing the atmosphere. J. Clim. submitted.

    Google Scholar 

  • Talley, L. (2003) Shallow, deep and intermediate components of the global heat budget. J. Phys. Oceanogr., 33: 530–560.

    Article  Google Scholar 

  • Thompson, D. and J.M. Wallace (2001) Annular modes in the extratropical circulation: Part I: Month-to-month variability. J. Clim., 13: 1000–1016.

    Article  Google Scholar 

  • Toggweiler, R. and B.Samuels (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42: 477–500.

    Article  Google Scholar 

  • Toggweiler, R. and B. Samuels (1998) On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28: 1832–1852.

    Article  Google Scholar 

  • Trenberth, K. and J.M. Caron (2001) Estimates of meridional atmosphere and ocean heat transports. J. Clim., 14: 3433–3443.

    Article  Google Scholar 

  • Trenberth, K.E., J.M. Caron and D.P. Stepaniak (2001) The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dyn., 17: 259–276.

    Article  Google Scholar 

  • Uppala, S.M., P.W. Kållberg, A.J. Simmons, U. Andrae, V. da Costa Bechtold, M. Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hólm, B.J. Hoskins, L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N.A. Rayner, R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo and J. Woollen (2005) The ERA-40 re-analysis. Q. J. Roy. Met. Soc., 131: 2961–3012. doi:10.1256/qj.04.176.

    Article  Google Scholar 

  • Wang, J. and J.A. Carton (2002) Seasonal heat budget of the Pacific and Atlantic Oceans. J. Phys. Oceanogr., 32: 3474–3489.

    Article  Google Scholar 

  • WGASF (2000) Intercomparison And Validation Of Ocean-Atmosphere Energy Flux Fields, Final Report Of The Joint WCRP/SCOR Working Group On Air-Sea Fluxes SCOR Working Group 110, P.K. Taylor (Ed). 312.

    Google Scholar 

  • Wijffels, S.E. (2001) Ocean transport of fresh water. In Ocean Circulation and Climate, Siedler, Church and Gould (Eds.). Academic Press, London: 475–488.

    Chapter  Google Scholar 

  • Wijffels, S.E., R.W. Schmitt, H.L. Bryden and A. Stigebrandt (1992) Transport of freshwater by the oceans. J. Phys. Oceanogr., 22: 155–162.

    Article  Google Scholar 

  • Willis, J., D. Roemmich and B. Cornuelle (2003) Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability. J. Geophys. Res., 108, doi:10.1029/2002JC001755.

    Google Scholar 

  • Woodgate, R., K. Aagaard and T. Weingartner (2006) Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004. Geophys. Res. Lett., 33, L15609, doi:10.1029/2006GL026931.

    Article  Google Scholar 

  • Wunsch, C. (2005) The total meridional heat flux and its oceanic and atmospheric partition. J. Clim., 18: 4374–4380.

    Article  Google Scholar 

  • Wunsch, C. and R. Ferrari (2004) Vertical mixing, energy and the general circulation of the oceans. Ann. Revs. Fluid Mech., 36: 281–314.

    Article  Google Scholar 

  • Yu, L. and R.A. Weller (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Am. Meteor. Soc., 88: 527–539.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Rhines, P., Häkkinen, S., Josey, S.A. (2008). Is Oceanic Heat Transport Significant in the Climate System?. In: Dickson, R.R., Meincke, J., Rhines, P. (eds) Arctic–Subarctic Ocean Fluxes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6774-7_5

Download citation

Publish with us

Policies and ethics