Skip to main content

How Vegetation Reinforces Soil on Slopes

  • Chapter

Once the instability process e.g. erosion or landslides has been identified on a slope, the type of vegetation to best reinforce the soil can then be determined. Plants improve slope stability through changes in mechanical and hydrological properties of the root-soil matrix. The architecture of a plants root system will influence strongly these reinforcing properties. We explain how root morphology and biomechanics changes between species. An overview of vegetation effects on slope hydrology is given, along with an update on the use of models to predict the influence of vegetation on mechanical and hydrological properties of soil on slopes. In conclusion, the optimal root system types for improving slope stability are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Ziemer RR (1991a) Effect of tree roots on shallow-seated landslides. USDA Forest Service, Gen. Tech. Rep. PSW-GTR-130

    Google Scholar 

  • Abe K, Ziemer RR (1991b) Effect of tree roots on a shear zone: modelling reinforced shear strength. Can J Forest Res 21:1012-1019

    Article  Google Scholar 

  • Abernethy B, Rutherfurd ID (2001) The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol Proc 15:63-79

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration; guidelines for crop water requirements. FAO Publication 56

    Google Scholar 

  • Bailey PHJ, Currey JD, Fitter AH (2002) The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. J Exp Bot 53:333-340

    Article  CAS  Google Scholar 

  • Barij N, Stokes A, Bogaard T, van Beek LPH (2007) Does growing on a slope affect tree xylem structure and water relations? Tree Physiol 27:757-764

    Google Scholar 

  • Bastiaanssen WGM (2000) SEBAL based sensible latent heat fluxes in the irrigated Gediz Basin, Turkey. J Hydrol 229:87-100

    Article  Google Scholar 

  • Bastiaanssen WG, Meneti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL), 1. formulation. J Hydrol 212-213:198-212

    Article  Google Scholar 

  • Betson RP (1964) What is watershed runoff? J Geophys Res 69:1541-1552

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils II. Water Res Res 18:1311-1325

    Article  Google Scholar 

  • Bischetti GB, Chiaradia EA, Simonato T, Speziali B, Vitali B, Vullo P, Zocco A (2005) Root strength and root area of forest species in Lombardy. Plant Soil 278:11-22

    Article  CAS  Google Scholar 

  • Bochet E, Poesen J, Rubio JL (2006) Runoff and soil loss under individual plants of a semiarid Mediterranean shrubland: influence of plant morphology and rainfall intensity. Earth Surf Proc Land 31:536-549

    Article  Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. Dordrecht, Kluwer

    Google Scholar 

  • Burroughs ER, Thomas BR (1977) Declining root strength in Douglas-fir after felling as a factor in slope stability. USDA Forest Service Research Paper INT-190, 1-27

    Google Scholar 

  • Cai F, Ugai K (1999) 3D FE-analysis of the stability of slope reinforced with piles. Numerical models in geomechanics -NUMOG 7:541-546

    Google Scholar 

  • Callister WD Jr (2007) Materials Science and Engineering: an Introduction. 7th ed. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Cammeraat LH (2002) A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surf Proc Land 27:1201-1222

    Article  Google Scholar 

  • Cammeraat LH, Van Beek R, Kooijman A (2005) Vegetation succession and its consequences for slope stability in SE Spain. Plant Soil 278:135-147

    Article  CAS  Google Scholar 

  • Chiatante D, Sarnataro M, Fusco S, Di Iorio A, Scippa GS (2003) Modification of root morphological parameters and root architecture in seedlings of Fraxinus ornus L. and Spartium junceum L. growing on slopes. Plant Biosyst 137:47-56

    Google Scholar 

  • Commandeur PR, Pyles MR (1991) Modulus of elasticity and tensile strength of Douglas fir roots. Can J Forest Res 21:48-52

    Article  Google Scholar 

  • Coppin NJ, Richards IJ (1990) Use of Vegetation in Civil Engineering. CIRIA, Butterworths, London

    Google Scholar 

  • Coutts MP (1983a) Root architecture and tree stability. Plant Soil 71:171-88

    Article  Google Scholar 

  • Coutts MP (1983b) Development of the structural root system of Sitka Spruce. Forestry 56:1-16

    Article  Google Scholar 

  • Coutts MP (1986) Components of tree stability in Sitka spruce on peaty gley soil. Forestry 59:173-197

    Article  Google Scholar 

  • Coutts MP, Nicoll BC (1991) Orientation of the lateral roots of trees. I. Upward growth of surface roots and deflection near the soil surface. New Phytol 119:227-234

    Article  Google Scholar 

  • Coutts MP, Nielsen CCN, Nicoll BC (1999) The development of symmetry, rigidity and anchorage in the structural root system of conifers. Plant Soil 217:1-15

    Article  Google Scholar 

  • Crook MJ, Ennos AR (1997) The increase in anchorage with tree size of the tropical tap rooted tree Mallotus wrayi, King (Euphorbiaceae). In: Jeronimidis G, Vincent JFV (eds) Plant Biomechanics. Centre for Biomimetics, Reading, UK, pp 31-36

    Google Scholar 

  • Cucchi V, Meredieu C, Stokes A, Berthier S, Bert D, Najar M, Denis A, Lastennet R (2004) Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinaster Ait.) growing in different soil podzolic conditions. Trees-Struct Funct 18:460-466

    Google Scholar 

  • Danjon F, Barker DH, Drexhage M, Stokes A (2007) Using 3D plant root architecture in models of shallow slope stability. Ann Bot-London, in press

    Google Scholar 

  • Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387-400

    Article  Google Scholar 

  • De Baets S, Poesen J, Knapen A, Barberá GG, Navarro JA (2007) Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil 294:169-183

    Article  CAS  Google Scholar 

  • Dekker SC, Rietkerk M, Bierkens MFP (2007) Coupling microscale vegetation-soil water and macroscale vegetation-precipitation feedbacks in semiarid ecosystems. Global Change Biol 13:671-678

    Article  Google Scholar 

  • De Rooij GH (2000) Modeling fingered flow of water in soils owing to wetting front instability: a review. J Hydrol 231-232:277-294

    Article  Google Scholar 

  • DesRochers A, Lieffers VJ (2001) The coarse-root system of mature Populus tremuloides in declining stands in Alberta, Canada. J Veg Science 12:355-360

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2003) Long-term modelling of landslides for different forest management practices. Earth Surf Proc Land 28:853-868

    Article  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot-London 95:351-361

    Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2007) Pattern of secondary thickening in a Quercus cerris root system. Tree Physiol 27:407-412

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO, Rome

    Google Scholar 

  • Duncan JM (1996) State of the art: limit equilibrium and finite element analysis of slopes. J Geotech Eng 122:577-596

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005a) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278:119-134

    Article  CAS  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005b) A numerical investigation into factors affecting the anchorage of roots in tension. Eur J Soil Sci 56:319-327

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Lac P, Stokes A (2007) A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture. Am J Bot 94: 1506-1514

    Article  Google Scholar 

  • Ekanayake JC, Phillips CJ (1999a) A model for determining thresholds for initiation shallow landslides under near-saturated conditions in the East Coast region, New Zealand. J Hydrol (NZ), 38, 1, 1-28

    Google Scholar 

  • Ekanayake JC, Phillips CJ (1999b) A method for stability analysis of vegetated hillslopes: an energy approach. Can Geotech J 36:1172-1184

    Article  Google Scholar 

  • Ekanayake JC, Phillips CJ (2002) Slope stability thresholds for vegetated hillslopes: a composite model. Can Geotech J 39:849-862

    Article  Google Scholar 

  • Ekanayake JC, Marden M, Watson AJ, Rowan D (1997) Tree roots and slope stability: a comparison between Pinus radiata and kanuka. New Zeal J For Sci 27:216-233

    Google Scholar 

  • Ennos AR (1989) The mechanics of anchorage in seedlings of sunflower, Helianthus annuus L. New Phytol 113:85-192

    Article  Google Scholar 

  • Ennos AR (1990) The anchorage of leek seedlings: the effect of root length and soil strength. Ann Bot-London 65:409-416

    Google Scholar 

  • Ennos AR (1993) The scaling of root anchorage. J Theor Biol 161:61-75

    Article  Google Scholar 

  • Ennos AR (1994) The biomechanics of root anchorage. Biomimetics 2:129-137

    Google Scholar 

  • Feddes RP, Kowalik P, Zaradny H (1978) Simulation of field water use and crop yield. Wageningen, Pudoc

    Google Scholar 

  • Fourcaud T, Ji J-N, Zhang Z-Q, Stokes A (2007) Understanding the impact of root morphology on uprooting mechanisms: a modelling approach. Ann Bot-London, in press

    Google Scholar 

  • Frydman S, Operstein V (2001) Numerical simulation of direct shear of root-reinforced soil. Ground Improv 5:41-48

    Google Scholar 

  • Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail J, van Beek LPH (2005) The influence of cellulose content on tensile strength in tree roots. Plant Soil 278:1-9

    Article  CAS  Google Scholar 

  • Genet M, Stokes A, Fourcaud T, Hu X, Lu Y (2006a) Soil fixation by tree roots: changes in root reinforcement parameters with age in Cryptomeria japonica D. Don. plantations. In: Marui H, Marutani T, Watanabe N, Kawabe H, Gonda Y, Kimura M, Ochiai H, Ogawa K, Fiebiger G, Heumader J, Rudolf-Miklau F, Kienholz H, Mikos M. (eds) Interpraevent 2006: Disaster Mitigation of Debris Flows, Slope Failures and Landslides. September 25 -27, 2006, Niigata, Japan. Universal Academy Press, Inc. Tokyo, Japan, ISBN 4-946443-98-3, pp 535-542

    Google Scholar 

  • Genet M, Stokes A, Fourcaud T, Li M, Luo T (2006b) Effect of altitude on root mechanical and chemical properties of Abies georgei in Tibet. In: Salmen L (ed) Proceedings 5 th Plant Biomechanics Conference, Sweden, 28 August -1 September, 2006, pp 305-310

    Google Scholar 

  • Gerrits AMJ, Savenije HHG, Hoffmann L, Pfister L (2006) Measuring forest floor interception in a beech forest in Luxembourg. Hydrol Earth Syst Sci Disc 3:2323-2341

    Google Scholar 

  • Goodman AM, Ennos AR (1999) The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Ann Bot-London 83:293-302

    Article  Google Scholar 

  • Goss MJ (1987) The specific effect of roots on the regeneration of soil structure. In: Monnier G, Goss MJ (eds) Soil Compaction and Degeneration, Balkema, Boston, pp 145-155

    Google Scholar 

  • Gray DH, Barker DH (2004) Root-soil mechanics and interactions. In: Bennett SJ, Collison AJC, Simon A (eds) Riparian vegetation and fluvial geomorphology: hydraulic, hydrologic and geotechnical interactions. Water Science and Application 8, American Geophysical Union, Washington, pp 125-139

    Google Scholar 

  • Gray DH, Leiser AJ (1982) Biotechnical Slope Protection and Erosion Control. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gray DH, Megahan WF (1981) Forest Vegetation Removal and Slope Stability in the Idaho Batholith, United States Department of Agriculture Forest Service, Intermountain Forest and Range Experimental Station Research Paper, INT-271:1-23

    Google Scholar 

  • Gray DH, Sotir RB (1996) Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. Wiley & Sons, Inc., New York

    Google Scholar 

  • Greenway DR (1987) Vegetation and slope stability. In: Anderson MG, Richards KS (eds) Slope Stability. Wiley, Chichester, pp 187-230

    Google Scholar 

  • Greenwood JR (2006) Slip4ex -A program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. Geotech Geol Eng 24:449-465

    Article  Google Scholar 

  • Greenwood JR, Norris JE, Wint J (2004) Assessing the contribution of vegetation to slope stability. J Geotech Eng 157:199-208

    Google Scholar 

  • Greenwood JR, Vickers AW, Morgan RPC, Coppin NJ, Norris JE (2001) Bioengineering -the Longham Wood Cutting field trial. CIRIA PR 81, London

    Google Scholar 

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geotechnique 49:387-403

    Article  Google Scholar 

  • Gruber F (1994) Morphology of coniferous trees: possible effects of soil acidification on the morphology of norway spruce and silver fir. In: Godbold D, Huttermann A (eds) Effects of Acid Rain on Forest Processes. Wiley & Sons, New York, pp 265-324

    Google Scholar 

  • Gyssels G, Poesen J, Bochet E, Li Y (2005) Impact of plant roots on the resistance of soils to erosion by water: a review. Prog Phys Geog 29:189-217

    Article  Google Scholar 

  • Halter MR, Chanway CP (1993) Growth and root morphology of planted and naturally regenerated Douglas-fir and lodgepole pine. Ann Sci For 50:71-77

    Article  Google Scholar 

  • Hathaway RL, Penny D (1975) Root strength in some Populus and Salix clones. New Zeal J Bot 13:333-344

    CAS  Google Scholar 

  • Hewlett JD, Hibbert AR (1967) Factors affecting the response of small watersheds to precipitation in humid areas. In: Supper WE, Lull HW (eds) International Symposium on Forest Hydrology. Pergamon, Oxford, pp 275-290

    Google Scholar 

  • Hintikka V (1972) Wind-induced movements in forest trees. Comm Inst For Fenn 76:1-56

    Google Scholar 

  • Hooghart J, Lablans W (1988) Van Penman naar Makkink. The Hague, CHO-TNO

    Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophysical Union 14:446-460

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275-370

    Article  Google Scholar 

  • Hsu LCY, Walker JCF, Butterfield BG, Jackson SL (2006) Compression wood does not form in the roots of Pinus radiata. IAWA J 27:45-54

    Google Scholar 

  • Itasca (1993) FLAC -Fast Lagrangian Analysis of Continua. Minneapolis, USA

    Google Scholar 

  • Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143-157

    Article  Google Scholar 

  • Jaffe MJ, Telewski FW (1984) Thigmomorphogenesis: callose and ethylene in the hardening of mechanically stressed plants. In: Timmermann BN, Steelink C, Leowus FA (eds) Phytochemical Adaptations to Stress. Plenum Press, New York, pp 79-95

    Google Scholar 

  • Jaffe MJ, Biro RL, Bridle K (1980) Thigmomorphogenesis: calibration of the parameters of the sensory function in beans. Physiol Plantarum 49:410-416

    Article  Google Scholar 

  • Jetten VG (1994) Modelling the effect of logging on the water balance of a tropical rainforest. A study in Guyana. PhD thesis, University Utrecht, Tropenbos Series 6. The Tropenbos Foundation, Wageningen, Netherlands

    Google Scholar 

  • Johnson EA (1987) The relative importance of snow avalanche disturbance and thinning on canopy plant populations. Ecology 68:43-53

    Article  Google Scholar 

  • Kajimoto T, Daimaru H, Okamoto T, Otani T, Onodera H (2004) Effects of snow avalanche disturbance on regeneration of subalpine Abies mariesii forest, northern Japan. Arctic, Antarctic Alpine Res 36:436-445

    Article  Google Scholar 

  • Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Func Ecol 17:170-177

    Article  Google Scholar 

  • Khuder H (2007) L’architecture et les propriétés mécaniques des systèmes racinaires des arbres qui poussent en pente. PhD thesis, Université Bordeaux I, France

    Google Scholar 

  • Khuder H, Danjon F, Stokes A, Fourcaud T (2006) Growth response and root architecture of Black locust seedlings growing on slopes and subjected to mechanical perturbation. In: Salmen L (ed) Proceedings 5 th Plant Biomechanics Conference, Sweden, 28 August -1 September, 2006, pp 299-304

    Google Scholar 

  • Khuder H, Stokes A, Danjon F, Gouskou K (2007) Is it possible to manipulate root anchorage in young trees? Plant Soil 294:87-102

    Article  CAS  Google Scholar 

  • Kirkby MJ (1978) Hillslope Hydrology. Wiley, Chichester

    Google Scholar 

  • Kokutse N, Fourcaud T, Kokou K, Neglo K, Lac P (2006) 3D numerical modelling and analysis of forest structure on hill slopes stability. In: Marui H, Marutani T, Watanabe N, Kawabe H, Gonda Y, Kimura M, Ochiai H, Ogawa K, Fiebiger G, Heumader J, Rudolf-Miklau F, Kienholz H, Mikos M (eds) Interpraevent 2006: Disaster Mitigation of Debris Flows, Slope Failures and Landslides. September 25 -27, 2006, Niigata, Japan. Universal Academy Press, Inc. Tokyo, Japan, ISBN 4-946443-98-3, pp 561-567

    Google Scholar 

  • Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, New York

    Google Scholar 

  • Kostler JN, Bruckner E, Bibelriether H (1968) Die Wurzeln der Waldbaume Verlag Paul Parey Hamburg, Berlin

    Google Scholar 

  • Kűlla T, Lŏhmus K (1999) Influence of cultivation method on root grafting in Norway spruce (Picea abies (L.) Karst.). Plant Soil 217:91-100

    Article  Google Scholar 

  • Lewis GJ (1985) Root strength in relation to windblow. Forestry Commission Report on Forest Research. HMSO, London, pp 65-66

    Google Scholar 

  • LI-COR (1992) LAI-2000 Plant canopy analyzer, Instruction Manual. LI-COR Inc., Lincoln, Nebraska, USA

    Google Scholar 

  • Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biochemistry of a forested ecosystem. Springer Verlag, New York

    Google Scholar 

  • Lindström A, Rune G (1999) Root deformation in containerised Scots pine plantations -effects on stability and stem straightness. Plant Soil 217:29-37

    Article  Google Scholar 

  • Lyford WH (1980) Development of the root system of northern red oak (Quercus rubra L.). Harvard Forest Paper 21

    Google Scholar 

  • Makkink JF (1957) Testing the Penman formula by the use of lysimeters. J Inst Water Engrs 11:277-288

    Google Scholar 

  • Makarova OV, Cofie P, Koolen AJ (1998) Axial stress-strain relationships of fine roots of Beech and Larch in loading to failure and in cyclic loading. Soil Till Res 45:175-187

    Article  Google Scholar 

  • Malet J-P, van Asch ThWJ, van Beek LPH, Maquaire O (2003) Apport des models hydrologiques spatialises a la simulation numerique de glissements de terrain. Impact pour la gestion du risque., SIRNAT -Les journees pour la prevention des risques. BRGM reports. BRGM, Orleans

    Google Scholar 

  • Marler TE, Discekici HM (1997) Root development of ‘red lady’ papaya plants growing on a hillside. Plant Soil 195:37-42.

    Article  CAS  Google Scholar 

  • Marshall TJ, Holmes JW (1988) Soil Physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Mattia C, Bischetti GB, Gentile F (2005) Biotechnical characteristics of root systems of typical Mediterranean species. Plant Soil 278:23-32

    Article  CAS  Google Scholar 

  • Mickovski SB, Ennos AR (2003) The effect of unidirectional stem flexing on shoot and root morphology and architecture in young Pinus sylvestris trees. Can J For Res 33:2022-2029

    Article  Google Scholar 

  • Mickovski SB, Van Beek LPH, Salin F (2005) Uprooting resistance of vetiver grass (Vetiveria zizanioides). Plant Soil 278:33-41

    Article  CAS  Google Scholar 

  • Mickovski SB, Bengough AB, Bransby MF, Davies MCR, Hallett PD, Sonnenberg R (2007) Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. Eur J Soil Sci, in press, doi: 10.1111/j.1365-2389.2007.00953

    Google Scholar 

  • Nicoll BC, Berthier S, Achim A, Gouskou K, Danjon F, van Beek LPH (2006) The architecture of Picea sitchensis structural root systems on horizontal and sloping terrain. Trees-Struct Func 20:701-712

    Google Scholar 

  • Nicoll BC, Ray D (1996) Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891-898

    Google Scholar 

  • Niklas KJ (1999) Variations of the mechanical properties of Acer saccharum roots. J Exp Bot 50:193-200.

    Article  CAS  Google Scholar 

  • Nilaweera NS, Nutalaya P (1999) Role of tree roots in slope stabilisation. Bull Eng Geol Env 57:337-342

    Article  Google Scholar 

  • Nörr R (2003) Planting -a risk for the stability of forest stands? In: Ruck A, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind Effects on Trees, International Conference, 16-18 Sept. 2003, Karlsruhe, Germany, pp 281-288

    Google Scholar 

  • Norris JE (2005a) Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant Soil 278:43-53

    Article  CAS  Google Scholar 

  • Norris JE (2005b) Root mechanics applied to slope stability. PhD thesis, Nottingham Trent University, Nottingham, UK

    Google Scholar 

  • Norris JE, Greenwood JR (2003) Root reinforcement on unstable slopes in Northern Greece and Central Italy. International Conference on Problematic Soils, July 2003, Nottingham Trent University, Nottingham, UK, pp 411-418

    Google Scholar 

  • Operstein V, Frydman S (2002) The stability of soil slopes stabilised with vegetation. Ground Improv 6:163-168

    Google Scholar 

  • O’Loughlin CL, Watson A (1979) Root-wood strength deterioration in Radiata Pine after clearfalling. New Zeal J Forest Sci 9:284-93

    Google Scholar 

  • Parlange JY, Smith RE (1976) Ponding time for variable rainfall rates. Can J Soil Sci 56:212-223

    Article  Google Scholar 

  • Parr A, Cameron AD (2004) Effects of tree selection on strength properties and distribution of structural roots of clonal Sitka spruce. For Ecol Manage 195:97-106

    Article  Google Scholar 

  • Patel RN (1964) On the occurrence of gelatinous fibres with special reference to root wood. J Inst Wood Sci 12:67-80

    Google Scholar 

  • Peltola H (2006) Mechanical stability of trees under static loads. Am J Bot 93:1501-1511

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Royal Soc A193:120-145

    Article  Google Scholar 

  • Perry J (1989) A survey of slope condition on motorway earthworks in England and Wales. RR199, Transport and Road Research Laboratory, Crowthorne.

    Google Scholar 

  • Perry J, Pedley M, Brady K (2003a) Infrastructure cuttings -condition appraisal and remedial treatment. C591, CIRIA, London

    Google Scholar 

  • Perry J, Pedley M, Reid M (2003b) Infrastructure embankments -condition appraisal and remedial treatment. C592, 2nd edition, CIRIA, London

    Google Scholar 

  • Pollen N (2006) Temporal and spatial variability in the root-reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 69:197-205

    Article  Google Scholar 

  • Pollen N, Simon A (2005) Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model, Water Resour Res 41:W07025, doi:10.1029/2004WR003801

    Article  Google Scholar 

  • Preisig CL, Carlson WC, Promnitz LC (1979) Comparative root system morphologies of seeded-in-place, bare-root and containerised Douglas-fir seedlings after out-planting. Can J Forest Res 9:399-405

    Google Scholar 

  • Priestly CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81-92

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926-1929

    Article  CAS  Google Scholar 

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees-Struct Func 4:385-402

    Google Scholar 

  • Ridolfi L, D’Odorico P, Porporato A, Rodriquez-Iturbe I (2003) Stochastic soil moisture dynamics along a hillslope. J Hydrol 272:264-275

    Article  Google Scholar 

  • Riedl H (1937) Bau und leistungen des wurzelholzes. Jahrbücher für Wissenschaftliche Botanik. Leipzig, Germany, Verlag von Gebrüder Borntrager, pp 1-75

    Google Scholar 

  • Rune G (2003) Slits in container wall improve root structure and stem straightness of outplanted Scots pine seedlings. Silva Fenn 37:333-342

    Google Scholar 

  • Sakals ME, Sidle RC (2004) A spatial and temporal model of root cohesion in forest soils. Can J For Res 34:950-958

    Article  Google Scholar 

  • Schiechtl HM (1980) Bioengineering for Land Reclamation and Conservation. University of Alberta Press, Edmonton, Alberta, Canada

    Google Scholar 

  • Schiechtl HM, Stern R (1996) Water Bioengineering Techniques: For Watercourse, Bank and Shoreline Protection. Blackwell Publishing Limited

    Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995-1024

    Article  Google Scholar 

  • Scippa GS, Di Michele M, Di Iorio A, Costa A, Lasserre B, Chiatante D (2006) Root response to slope: anchorage and gene factors involved. Ann Bot-London 97:857-866

    Article  CAS  Google Scholar 

  • Shrestha MB, Horiuchi M, Yamadera Y, Miyazaki T (2000) A study on the adaptability mechanism of tree roots on steep slopes. In: Stokes A (ed) The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology. Developments in Plant and Soil Sciences, vol. 87. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 51-57

    Google Scholar 

  • Sidle RC (1992) A theoretical model of the effects of timber harvesting on slope stability. Water Res Res 28:1897-1910

    Article  Google Scholar 

  • Simon A, Collison AJC (2002) Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf Proc Land 27:527-546

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2006) Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador. Plant Soil 279: 173-185

    Article  CAS  Google Scholar 

  • Steele DP, MacNeil DJ, McMahon W, Barker DH (2004) The use of live willow poles for stabilising highway slopes. TRL Report 619, Crowthorne, TRL Limited

    Google Scholar 

  • Stone EL, Kalisz PJ (1991) On the maximum extent of tree roots. Forest Ecol Manag 46: 59-102

    Article  Google Scholar 

  • Stokes A (1999) Strain distribution during anchorage failure in root systems of Maritime pine (Pinus pinaster Ait.) at different ages and tree growth response to wind-induced root movement. Plant Soil 217:17-27

    Article  Google Scholar 

  • Stokes A (2002) The biomechanics of tree root anchorage. In: Waisel Y, Eshel A, Kafkaki U (eds) Plant Roots -The Hidden Half. Plenum Publishing, New York, pp 175-186

    Google Scholar 

  • Stokes A, Guitard DG (1997) Tree root response to mechanical stress. In: Altman A, Waisel Y (eds) The Biology of Root Formation and Development. Plenum Publishing, New York, pp 227-236

    Google Scholar 

  • Stokes A, Mattheck C (1996) Variation of wood strength in tree roots. J Exp Bot 47:693-699

    Article  CAS  Google Scholar 

  • Stokes A, Fitter AH, Coutts MP (1995) Responses of young trees to wind and shading: effects on root architecture. J Exp Bot 46:1139-1146

    Article  CAS  Google Scholar 

  • Stokes A, Berthier S, Sacriste S, Martin F (1998) Variations in maturation strains and root shape in root systems of Maritime pine (Pinus pinaster Ait.). Trees-Struct Func 12:334-339.

    Google Scholar 

  • Stokes A, Nicoll BC, Coutts MP, Fitter AH (1997) Responses of young Sitka spruce clones to mechanical perturbation and nutrition: effects on biomass allocation, root development, and resistance to bending. Can J Forest Res 27:1049-1057

    Article  Google Scholar 

  • Stokes A, Abd.Ghani M, Salin F, Danjon F, Jeannin H, Berthier S, Kokutse AD, Frochot H (2007a) Root morphology and strain distribution during tree failure on mountain slopes. In: Stokes A, Spanos I, Norris JE, Cammeraat LH (eds) Ecoand Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. Developments in Plant and Soil Sciences Volume 103, Springer Publishers, Dordrecht, pp 165-173

    Chapter  Google Scholar 

  • Stokes A, Lucas A, Jouneau L (2007b) Plant biomechanical strategies in response to frequent disturbance: uprooting of Phyllostachys nidularia (Poaceae) growing on landslide prone slopes in Sichuan, China. Am J Bot 94:1129-1136

    Article  Google Scholar 

  • Stokes A, Salin F, Kokutse AD, Berthier S, Jeannin H, Mochan S, Kokutse N, Dorren L, Abd.Ghani M, Fourcaud T (2005) Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278:107-117

    Article  CAS  Google Scholar 

  • Storey PJ (2002) The conservation and improvement of sloping land: a manual of soil and water conservation and soil improvement on sloping land. Volume 1. Science Publishers, Enfield, New Hampshire, USA

    Google Scholar 

  • Styczen ME, Morgan RPC (1995) Engineering properties of vegetation. In: Morgan RPC, Rickson RJ (eds) Slope Stabilisation and Erosion Control: a Bioengineering Approach. McGraw Hill, pp 5-58

    Google Scholar 

  • Telewski FW (1995) Wind-induced physiological and developmental responses in trees. In: Coutts MP and Grace J (eds) Wind and Tree. Cambridge University Press, Cambridge, pp 237-263

    Chapter  Google Scholar 

  • Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466-1476

    Article  Google Scholar 

  • Terwilliger VJ, Waldron LJ (1991) Effects of root reinforcement on soil-slip patterns in the transverse ranges of southern California. Geol Soc Am Bull 103:775-785

    Article  Google Scholar 

  • Timell TE (1986) Compression Wood in Gymnosperms. Springer-Verlag, Berlin Turmanina VI (1965) On the strength of tree roots. Bull Moscow Soc Nat Biol Sect 70:36-45

    Google Scholar 

  • Valentin C, d’Herbers JM, Poesen J (1999) Soil and water components of banded vegetation patterns. Catena 37:1-24

    Article  Google Scholar 

  • Van Asch ThWJ, van Dijck SJE, Hendriks MR (2001) The role of overland flow and subsurface flow on the spatial distribution of soil moisture in the topsoil. Hydrol Process 15:2325-2340

    Article  Google Scholar 

  • Van Beek LPH (2002) Assessment of the influence of changes in land use and climate on landslide activity in a Mediterranean environment. Netherlands Geographical Studies 294, KNAG, Utrecht

    Google Scholar 

  • Van Beek LPH, van Asch ThWJ (1998) A combined conceptual model for the effects of fissure-induced infiltration on slope stability. In: Hergarten S, Neugebauer HJ (eds) Process Modelling and Landform Evolution. Springer Verlag, Berlin, pp 147-169

    Google Scholar 

  • Van Beek LPH, Cammeraat LH (2007) Infiltration and soil water redistribution under different types of land cover after abandonment: field observations from broadscale rainfall experiments. Hydrol Process, in press

    Google Scholar 

  • Van Beek LPH, Wint J, Cammeraat LH, Edwards JP (2005) Observation and simulation of root reinforcement on abandoned Mediterranean slopes. Plant Soil 278:55-74

    Article  CAS  Google Scholar 

  • Waldron LJ (1977) The shear resistance of root permeated homogenous and stratified soil. J Soil Sci Soc Am 41:843-849

    Google Scholar 

  • Waldron LJ, Dakessian S (1981) Soil reinforcement by roots: calculation of increased soil shear resistance from root properties. Soil Sci 132:427-435

    Article  Google Scholar 

  • Waldron LJ, Dakessian S (1982) Effect of grass, legume, and tree roots on soil shearing resistance. J Soil Sci Soc Am 46:894-899

    Article  Google Scholar 

  • Wang WL, Yen BC (1974) Soil arching in slopes. J Geotech Eng Div ASCE, 100, GT1:61-78

    Google Scholar 

  • Wasterlund I (1989) Strength components in the forest floor restricting maximum tolerable machine forces. J Terramech 26:177-182

    Article  Google Scholar 

  • Watson AJ, Marden M, Rowan D (1995) Tree species performance and slope stability. In: Barker DH (ed) Vegetation and Slope Stabilisation, Protection and Ecology, Thomas Telford Press, London, pp 161-171

    Google Scholar 

  • Willatt ST, Sulistyaningsih N (1990) Effect of plant roots on soil strength. Soil Till Res 16:329-336

    Article  Google Scholar 

  • Wu TH (1976) Investigation of landslides on Prince of Wales Island. Geotechnical Engineering Report 5, Civil Engineering Department, Ohio State University, Columbus, Ohio, USA

    Google Scholar 

  • Wu TH, McKinnell III WP, Swanston DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J 16:19-33

    Article  Google Scholar 

  • Wu TH, Watson AJ, El-Khouly MA (2004) Soil-root interaction and slope stability. In: Barker DH, Watson AJ, Sombatpanit B, Northcut B, Magliano AR (eds) Ground and Water Bioengineering for Erosion Control and Slope Stabilization. Science Publishers Inc. USA, pp 183-192

    Google Scholar 

  • Zhou Y, Watts D, Cheng X, Li Y, Luo H, Xiu Q (1997) The traction effect of lateral roots of Pinus yunnanensis on soil reinforcement: a direct in situ test. Plant Soil 190:77-86

    Article  CAS  Google Scholar 

  • Ziemer RR (1981) Roots and shallow stability of forested slopes. Int Ass Hydrol Sci 132:343-361

    Google Scholar 

  • Zienkiewicz OC, Humphreson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25:671-689

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL (1998) The Finite Element Method, 4th edn, vol. 2. Solid and Fluid Mechanics, Dynamics and Non-linearity. McGraw-Hill, New York

    Google Scholar 

  • Zinke P (1967) Forest interception studies in the United States. In: Sopper WE, Lull HW (eds) International Symposium on Forest Hydrology, Proc. National Science Foundation Adv. Science Seminar, Pennsylvania State University, University Park, 29 August-10 September 1965. Pergamon Press, Oxford, UK, pp 137-161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Stokes, A. et al. (2008). How Vegetation Reinforces Soil on Slopes. In: Norris, J.E., et al. Slope Stability and Erosion Control: Ecotechnological Solutions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6676-4_4

Download citation

Publish with us

Policies and ethics