Skip to main content

Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Eukaryotic algae and cyanobacteria occur virtually in every terrestrial habitat on our planet. Organisms belonging to these groups are present even in some of the most extreme terrestrial environments, such as rocks in hot and cold deserts (Friedmann and Ocampo-Friedmann, 1984), Antarctic soils (Broady, 1996) and highly acidic post-mining sites (Lukešová, 2001). As early as the beginning of the nineteenth century, it was realized that microalgae occur also on walls, masonry and other man-made substrata (e.g. Dillwyn, 1809; Agardh, 1824); however, very little attention has been devoted to this type of algal communities until recently. Cities are artificial environments in which artificial substrata (such as concrete, asphalt, glass and metal) provide the largest part of the surfaces available for the colonization of microorganisms. The surfaces of many urban buildings are exposed to full sunlight; organisms growing on such surfaces are therefore frequently subjected to extremely high light irradiance, high levels of UV radiation and extreme dehydration (Crispim and Gaylarde, 2004; Karsten et al., 2005). The temperature of walls and roofs is subjected to a high range of variation and, in tropical regions, can reach 60–70ºC (Tripathi et al., 1990). Most urban habitats are also affected by large amounts of pollutants, such as gases (SO2, CO, NOX, hydrocarbons, ozone), aerosols, dusts and heavy metals (Seaward, 1979; John, 1988). Due to such a negative combination of factors for organisms of aquatic origin, for microalgae and cyanobacteria cities can be certainly considered extreme environments. Reports on algae and cyanobacteria from urban habitats have gradually appeared in the last few decades. Most studies on this subject concern European, Asiatic and South American cities; at present, there is almost no information published for other continents. In general, the knowledge of the diversity and ecology of these communities is still rudimentary, because most studies have focused much more on the biodeterioration operated by these organisms on artificial surfaces than on their biology. In this chapter, the information currently available on cyanobacteria and green algae of urban environments is summarized. General aspects of the diversity and distribution of these organisms in urban habitats are discussed, and the composition and ecology of the most common algal assemblages in these environments are described in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agardh, C.A. (1824). Systema algarum. Literis Berlingiana, Lund, 312 pp.

    Google Scholar 

  • Anagnostidis, K., Economou-Amilli, A. and Roussomoustakaki, M. (1983). Epilithic and chas-molithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38: 227-287.

    Google Scholar 

  • Barkman, J.J. (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. Van Gorcum and Comp. N.V. - G.A. Hak and Dr. H.J. Prakke, Assen, 628 pp.

    Google Scholar 

  • Bates, J.W., Bell, J.N.B. and Farmer, A.M. (1990). Epiphyte recolonization of oaks along a gradient of air-pollution in South-East England, 1979-1990. Environ. Pollut. 68: 81-99.

    Article  CAS  PubMed  Google Scholar 

  • Bates, J.W., Bell, J.N.B. and Massara, A.C. (2001). Loss of Lecanora conizaeoides and other fluctua-tions of epiphytes on oak in SE England over 21 years with declining SO2 concentrations. Atmos. Environ. 35: 2557-2568.

    Article  CAS  Google Scholar 

  • Bellinzoni, A.M., Caneva, G. and Ricci, S. (2003). Ecological trends in travertine colonisation by pio-neer algae and plant communities. Int. Biodeter. Biodegr. 51: 203-210.

    Article  Google Scholar 

  • Boye Petersen, J. (1928). The aerial algae of Iceland. In: L.K. Rosenvinge and E. Warming (eds.) The Botany of Iceland. Vol. II. Part II. J. Frimodt, Copenhagen, and Wheldon and Wesley, London, pp. 325-447.

    Google Scholar 

  • Broady, P.A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 5: 1307-1335.

    Article  Google Scholar 

  • Brook, A.J. (1968). The discoloration of roofs in the United States and Canada by algae. J. Phycol. 4: 250.

    Article  Google Scholar 

  • Caneva, G., Gori, E. and Danin, A. (1992a). Incident rainfall in Rome and its relation to biodeterio-ration of buildings. Atmos. Environ. 26B: 255-259.

    CAS  Google Scholar 

  • Caneva, G., Nugari, M.P., Ricci, S. and Salvadori O. (1992b). Pitting of marble Roman monuments and the related microflora. In: J.D. Rodrigues, F. Henriques and F.T. Jeremias (eds.) Proceedings of the Seventh International Congress on Deterioration and Conservation of Stone. Laboratorio Nacional de Engenharia Civil, Lisbon, pp. 521-530.

    Google Scholar 

  • Caneva, G. Danin, A., Ricci, S. and Conti, C. (1994). The pitting of the Trajan’s column, Rome: an ecological model of its origin. In: Conservazione del patrimonio culturale. Contributi del Centro Linceo Interdisciplinare“Beniamino Segre”n.88 Accademia Nazionale dei Lincei, Rome, pp. 77-101.

    Google Scholar 

  • Caneva, G., Gori, E. and Montefinale, T. (1995). Biodeterioration of monuments in relation to cli-matic changes in Rome between 19-20th centuries. Sci. Total Environ. 167: 205-214.

    Article  CAS  Google Scholar 

  • Crispim, C.A. and Gaylarde, C.C. (2004). Cyanobacteria and biodeterioration of cultural heritage: a review. Microb. Ecol. 49: 1-9.

    Article  PubMed  Google Scholar 

  • Crispim, C.A., Gaylarde, P.M. and Gaylarde, C.C. (2003). Algal and cyanobacterial biofilms on cal-careous historic buildings. Curr. Microbiol. 46: 79-82.

    Article  CAS  PubMed  Google Scholar 

  • Crispim, C.A., Gaylarde, C.C. and Gaylarde, P.M. (2004). Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. Int. Biodeter. Biodegr. 54: 121-124.

    Article  Google Scholar 

  • Danin, A. and Caneva, G. (1990). Deterioration of limestone walls in Jerusalem and marble monu-ments in Rome caused by cyanobacteria and cyanophilous lichens. Int. Biodeter. 26: 397-417.

    Article  Google Scholar 

  • Darienko, T. and Hoffmann, L. (2003). Algal growth on cultural monuments in Ukraine. Biologia, Bratislava 58: 575-587.

    Google Scholar 

  • Darlington, A. (1981). Ecology of Walls. Heinemann Educational Books, London, 138 pp.

    Google Scholar 

  • Dillwyn, L.W. (1809). British Confervae or colored figures and descriptions of the British plants referred by botanists to the genus Conferva. W. Phillips, London, 87 pp.

    Google Scholar 

  • Ettl, H. and Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer Verlag, Stuttgart, Jena and New York, 721 pp.

    Google Scholar 

  • Flores, M., Lorenzo, J. and Gómez-Alarcón, G. (1997). Algae and bacteria on historic monuments at Alcalá de Henares, Spain. Int. Biodeter. Biodegr. 40: 241-246.

    Article  Google Scholar 

  • Friedmann, E.I. and Ocampo-Friedmann (1984). Endolithic microorganisms in extreme dry environ-ments: analysis of a lithobiontic microbial habitat. In: M.J. Klug and C.A. Reddy (eds.) Microbial Ecology. American Society for Microbiology, Washington DC, pp. 177-185.

    Google Scholar 

  • Fritsch, F.E. and Haines, F.M. (1923). The moisture-relations of terrestrial algae. II. The changes dur-ing exposure to drought and treatment with hypertonic solutions. Ann. Bot. 37: 683-728.

    Google Scholar 

  • Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W. (1992). Evidence for ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56: 17-23.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F., Wingard, C.E. and Castenholz, R.W. (1993). Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59: 170-176.

    CAS  PubMed  Google Scholar 

  • Gärtner, G. (1994). Zur Taxonomie aerophiler grüner Algenflüge an Baumrinden. Ber. Nat.-Med. Verein Innsbruck 81: 51-59.

    Google Scholar 

  • Gärtner, G. and Stoyneva, M.P. (2003). First study of aerophytic cryptogams on monuments in Bulgaria. Ber. Nat.-Med. Verein Innsbruck 90: 73-82.

    Google Scholar 

  • Garty, J. (1990). Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 68: 1349-1353.

    Article  Google Scholar 

  • Gaylarde, P.M. and Gaylarde, C.C. (1999). Algae and cyanobacteria on painted surfaces in southern Brazil. Rev. Microbiol. 30: 209-213.

    Google Scholar 

  • Gaylarde, P.M. and Gaylarde, C.C. (2000). Algae and cyanobacteria on painted buildings in Latin America. Int. Biodeter. Biodegr. 46: 93-97.

    Article  Google Scholar 

  • Gaylarde, C.C. and Gaylarde, P.M. (2005). A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int. Biodeter. Biodegr. 55: 131-139.

    Article  Google Scholar 

  • Gaylarde, C.C. and Morton, L.H.G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling 14: 59-74.

    Article  Google Scholar 

  • Gaylarde, C.C., Gaylarde, P.M., Copp, J. and Neilan, B. (2004). Polyphasic detection of cyanobacteria in terrestrial biofilms. Biofouling 20: 71-79.

    Article  CAS  PubMed  Google Scholar 

  • Giaccone, G. and Di Martino, V. (1999). Biologia delle alghe e conservazione dei monumenti. Boll. Acc. Gioenia Sci. Nat. 32: 53-81.

    Google Scholar 

  • Gilbert, O.L. (1991). The Ecology of Urban Habitats. Chapman and Hall, London, 369 pp.

    Google Scholar 

  • Golubic, S. (1967). Algenvegetation der Felsen. Eine ökologische Algenstudie im dinarischen Karstgebiet. In: H.J. Elster and W. Ohle (eds.) Die Binnengewässer 23. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 1-183.

    Google Scholar 

  • Gómez-Alarcón, G., Muñoz, M., Ariño, X. and Ortega-Calvo, J.J. (1995). Microbial communities in weathered sandstones: the case of Carrascosa del Campo church, Spain. Sci. Total Environ. 167: 249-254.

    Article  Google Scholar 

  • Grant, C. (1982). Fouling of terrestrial substrates by algae and implications for control - a review. Int. Biodeter. Bull. 18: 57-65.

    Google Scholar 

  • Häubner, N., Schumann, R. and Karsten, U. (2006). Aeroterrestrial miroalgae growing in biofilms on facades - response to temperature and water stress. Microb. Ecol. 51: 285-293.

    Article  PubMed  Google Scholar 

  • Ho, K.K., Tan, K.H. and Wee, Y.C. (1983). Growth conditions of Trentepohlia odorata (Chlorophyta, Ulotrichales). Phycologia 22: 303-308.

    CAS  Google Scholar 

  • Hoffmann, L. (1986). Cyanophycées aériennes et subaériennes du Grand-Duché de Luxembourg. Bull. Jard. Bot. Nat. Belg. 56: 77-127.

    Article  Google Scholar 

  • Hoffmann, L. (1989). Algae of terrestrial habitats. Bot. Rev. 55: 77-105.

    Article  Google Scholar 

  • Jaag, O. (1945). Untersuchungen über dieVegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz, Band IX, Heft 3. Kommissionsverlag Buchdruckerei Büchler and Co., Bern, 560 pp.

    Google Scholar 

  • John, D.M. (1988). Algal growths on buildings: a general review and methods of treatment. Biodeter. Abstr. 2: 81-102.

    Google Scholar 

  • John, D.M. (2002). Orders Chaetophorales, Klebsormidiales, Microsporales, Ulotrichales. In: D.M. John, B.A. Whitton and A.J. Brook (eds.) The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge, pp. 433-468.

    Google Scholar 

  • Joshi, C.D. and Mukundan, U. (1997). Algal disfigurement and degradation of architectural paints in India. Paintindia 47: 27-32.

    Google Scholar 

  • Kapusta, M and Kovacik, L. (2000). Epilithic phycoflora on the selected anthropogenic objects in Bratislava (Slovakia) (in Slovak). Bull. Slov. Bot. Spolocn. Bratislava 22: 15-22.

    Google Scholar 

  • Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. (2005). Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41: 557-566.

    Article  CAS  Google Scholar 

  • Kovacik, L. (2000). Cyanobacteria and algae as agents of biodeterioration of stone substrata of his-torical buildings and other cultural monuments. In: S. Choi and M. Suh (eds.) Proceedings of the New Millennium International Forum on Conservation of Cultural Property. Kongju National University, Kongju, pp. 44-58.

    Google Scholar 

  • Lamenti, G., Tiano, P. and Tomaselli, L. (2000). Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). J. Appl. Phycol. 12: 427-433.

    Article  Google Scholar 

  • Lee, K.B. and Wee, Y.C. (1982). Algae growing on walls around Singapore. Malay. Nat. J. 35: 125-132.

    Google Scholar 

  • López-Bautista, J.M., Waters, D.A. and Chapman, R.L. (2002). The Trentepohliales revisited. Constancea 83 (http://ucjeps.berkeley.edu/constancea/83/lopez_etal/trentepohliales.html).

  • Lukešová, A. (2001). Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor. Ecol. 9: 341-350.

    Article  Google Scholar 

  • Lüttge, U. (1997). Cyanobacterial tintenstrich communities and their ecology. Naturwissenschaften 84: 526-534.

    Article  Google Scholar 

  • Menéndez, J.L. and Rico, J.M. (2001). Rosenvingiella polyrhiza (Rosenv.) P.C. Silva y Prasiola calophylla (Carmich. ex Grev.) Kützing (Prasiolaceae), dos nuevas Prasiolales del NW peninsular. An. Jard. Bot. Madrid 58: 352-354.

    Google Scholar 

  • Menéndez, J.L., Rindi, F., Rico, J.M. and Guiry, M.D. (2006). The use of CHAID classification trees as an effective descriptor of the distribution of Rosenvingiella radicans (Prasiolales, Chlorophyta) in urban environments. Cryptogamie, Algol. 27: 153-164.

    Google Scholar 

  • Mikami, K. and Murata, M. (2003). Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog. Lipid Res. 42: 527-543.

    Article  CAS  PubMed  Google Scholar 

  • Morison, M.O. and Sheath, R.G., (1985). Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24: 129-145.

    CAS  Google Scholar 

  • Nienow, J.A. (1996). Ecology of subaerial algae. Nova Hedwigia Beih. 112: 537-552.

    Google Scholar 

  • Noguerol-Seoane, A. and Rifón-Lastra, A. (1997). Epilithic phycoflora on monuments. A survey of San Esteban de Ribas de Sil monastery (Ourense, NW Spain). Cryptogamie, Algol. 18: 351-361.

    Google Scholar 

  • Ong, B.L., Lim, M. and Wee, Y.C. (1992). Effects of desiccation and illumination on photosynthesis and pigmentation of an edaphic population of Trentepohlia odorata (Chlorophyta). J. Phycol. 28: 768-772.

    Article  CAS  Google Scholar 

  • Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1991). Biodeterioration of building materials by cyanobacteria and algae. Int. Biodeter. 28: 165-185.

    Article  Google Scholar 

  • Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993a). Cyanobacteria and algae on historic buildings and monuments. In: K.L. Garg, N. Garg and K.G. Mukerji (eds.) Recent Advances in Biodeterioration and Biodegradation. Naya Prokash, Calcutta, pp. 175-203.

    Google Scholar 

  • Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993b). Niches for phototrophic microoganisms in stone monuments. In: R. Guerrero and C. Pedrós-Alió (eds.) Trends in Microbial Ecology. Spanish Society for Microbiology, pp. 673-676.

    Google Scholar 

  • Ortega-Calvo, J.J., Sanchez-Castillo, P.M., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993c). Isolation and characterization of epilithic chlorophytes and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia 57: 239-253.

    Google Scholar 

  • Ortega-Calvo, J.J., Ariño, X., Hernández-Mariné, M. and Saiz-Jiménez, C. (1995). Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci. Total. Environ. 167: 329-341.

    Article  CAS  Google Scholar 

  • Pisut, I. and Lisicka, E. (2000). Monitoring ofepiphytes on permanent plot in the vicinity of Bratislava (SW Slovakia). Biologia 55: 369-373.

    Google Scholar 

  • Poli Marchese, E., Luciani, F., Razzara, S., Grillo, M., Auricchia, A., Stagno, F., Giaccone, G., Di Geronimo, R. and Di Martino, V. (1995). Biodeteriorating plants on monuments and stonework in historical city centre of Catania: “Il monastero dei Benedettini”. In: Proceedings of the first International Congress on “Science and technology for the safeguard of cultural heritage in the Mediterranean basin”. University of Catania, Catania, pp. 1195-1203.

    Google Scholar 

  • Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 34: 319-328.

    Article  Google Scholar 

  • Ricci, S., Pietrini, A.M. and Giuliani, M.R. (1989). A contribution to the knowledge of the algal flora of archaeological remains: the Foro Romano. Braun-Blanquetia 3: 319-320.

    Google Scholar 

  • Rifón-Lastra, A. and Noguerol-Seoane, Á. (2001). Green algae associated with the granite walls of monuments in Galicia (NW Spain). Cryptogamie, Algol. 22: 305-326.

    Article  Google Scholar 

  • Rindi, F. and Guiry, M.D. (2002). Diversity, life history and ecology of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J. Phycol. 38: 39-54.

    Article  Google Scholar 

  • Rindi, F. and Guiry, M.D. (2003). Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogamie, Algol. 24: 245-267.

    Google Scholar 

  • Rindi, F. and Guiry, M.D. (2004). Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.

    Article  Google Scholar 

  • Rindi, F., Guiry, M.D., Barbiero, R.P. and Cinelli, F. (1999). The marine and terrestrial Prasiolales (Chlorophyta) of Galway City, Ireland: a morphological and ecological study. J. Phycol. 35: 469-482.

    Article  Google Scholar 

  • Rindi, F. Guiry, M.D., Critchley, A.T. and Ar Gall, E. (2003). The distribution of some species of Trentepohliaceae (Trentepohliales, Chlorophyta) in France. Cryptogamie, Algol. 24: 133-144.

    Google Scholar 

  • Rindi, F., McIvor, L. and Guiry, M.D. (2004). The Prasiolales (Chlorophyta) of Atlantic Europe: an assessment based on morphological, molecular and ecological data, including the characterization of Rosenvingiella radicans (Kützing) comb. nov. J. Phycol. 40: 977-997.

    Article  Google Scholar 

  • Rosas, I., Roy-Ocotla, G., Mosiño, P., Baez, A. and Rivera, L. (1987). Abundance and heterogeneity of algae in the Mexico City atmosphere. Geofis. Int. 26: 359-373.

    Google Scholar 

  • Roy-Ocotla, G. and Carrera, J. (1993). Aeroalgae: responses to some aerobiological questions. Grana 32: 48-56.

    Article  Google Scholar 

  • Saiz-Jimenez, C., Garcia-Rowe, J., Garcia del Cura, M.A., Ortega-Calvo, J.J., Roekens, E. and Van Grieken, R. (1990). Endolithic cyanobacteria in Maastricht limestone. Sci. Total Environ. 94: 209-220.

    Article  CAS  Google Scholar 

  • Schlichting, H.E. (1975). Some subaerial algae from Ireland. Brit. Phycol. J. 10: 257-261.

    Article  Google Scholar 

  • Seaward, M.R.D. (1979). Lower plants and the urban landscape. Urb. Ecol. 4: 217-225.

    Article  Google Scholar 

  • Segal, S. (1969). Ecological Notes on Wall Vegetation. W. Junk, The Hague, 325 pp.

    Google Scholar 

  • Siefermann-Harms, D. (1987). The light-harvesting and protective functions of carotenoids in photo-synthetic membranes. Physiol. Plant. 69: 561-568.

    Article  CAS  Google Scholar 

  • Sing, l.W. (2002). Product development for green productivity – a case study of the development of algae resistant surface coating for building facades in the human tropics. Second World Conference on Green Productivity: http://www.apo-tokyo.org/gp/manila_conf02/resource_papers/narrative/dr_loh_wah_sing.pdf.

  • Stapper, N.J. and Franzen-Reuter, I. (2004). Mapping aerial hypertrophication with epiphytic lichens as biomonitors in North Rhine-Westphalia (NRW, Germany). Engl. Nat. Res. Reports 525: 31-36.

    Google Scholar 

  • Tanaka, N. and Nakamoto, H. (1999). HtpG is essential for the thermal stress management in cyanobacteria. FEBS Letters 458: 117-123.

    Article  CAS  PubMed  Google Scholar 

  • Tiano, P., Accolla, P. and Tomaselli, L. (1995). Phototrophic bideteriogens on lithoid surfaces: an eco-logical study. Microb. Ecol. 29: 299-309.

    Article  Google Scholar 

  • Tomaselli, L., Lamenti, G., Bosco, M. and Tiano, P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int. Biodeter. Biodegr. 46: 251-258.

    Article  Google Scholar 

  • Tomaselli, L., Margheri, M.C. and Florenzano, G. (1982). Indagine sperimentale sul ruolo dei cianobatteri e delle microalghe nel deterioramento di monumenti e affreschi. In: Proceedings of the Third International Congress on Deterioration and Preservation of Stone. Universitá degli Studi, Istituto di Chimica Industriale, Padova, pp. 313-325.

    Google Scholar 

  • Tripathi, P., Roy, A. and Adhikary, S.P. (1997). Survey of epilithic blue-green algae (cyanobacteria) from temples of India and Nepal. Algol. Stud. 87: 43-57.

    Google Scholar 

  • Tripathi, S.N., Tiwari, B.S. and Talpasayi, E.R.S. (1990). Growth of cyanobacteria (blue-green algae) on urban buildings. Energ. Buildings 15: 499-505.

    Article  Google Scholar 

  • Turian, G. (1979) Composants de la croûte lichenoïde noire colonisatrice primaire des roches murales. Saussurea 12: 87-100.

    Google Scholar 

  • Turian, G. (1981). Traînées noires biotiques (Cyanobactéries) et abiotiques (suie) de roches murales en ville de Genève. Saussurea 12: 71-77.

    Google Scholar 

  • Turian, G. (1985). Colonisation primaire des murs de béton par une Chrysocapsa (Cyanobactérie) à pigment U.V.-protecteur. Saussurea 16: 43-48.

    Google Scholar 

  • Uher, B., Aboal, M. and Kovacik, L (2004a), Cyanobacteria and algae on monuments and buildings ˇn. Bratislava 10: 77-82.

    Google Scholar 

  • Uher, B., Aboal, M. and Kovacik, L. (2004b). Primitive coccal cyanobacteria of genus Chroococcidiopsis Geitler as the constantly appearing organisms in extreme urban environments. In: 16th Symposium of the International Association for Cyanophyte Research. Centre de Recherche Public - Gabriel Lippmann, Luxembourg, p. 70.

    Google Scholar 

  • Uher, B. and Kovacik, L. (2004). Epilithic cyanobacteria and algae in subterranean Mausoleum ˇn. Bratislava 10: 83-86.

    Google Scholar 

  • Uher, B., Aboal, M. and Kovacik, L. (2005). Epilithic and chasmoendolithic phycoflora of monu-ments and buildings in South-eastern Spain. Cryptogamie, Algol. 26: 275-308.

    Google Scholar 

  • Verb, R.G. and Vis, M.L. (2001). Macroalgal communities from an acid mine drainage impacter watershed. Aquat. Bot. 71: 93-107.

    Article  Google Scholar 

  • Wee, Y.C. and Lee, K.B. (1980). Proliferation ofalgae on surfaces of buildings in Singapore. Int. Biodeter. Bull. 16: 113-117.

    Google Scholar 

  • Whitton, B.A. (1992). Diversity, ecology and taxonomy of the cyanobacteria. In: N.H. Mann and N.G. Carr (eds.) Photosynthetic Prokaryotes. Plenum Press, New York, pp. 1-51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rindi, F. (2007). Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_34

Download citation

Publish with us

Policies and ethics