Skip to main content

Generation and Characterization of Single-Cycle Infectious Canine Influenza A Virus (sciCIV) and Its Use as Vaccine Platform

  • Protocol
  • First Online:
Vaccine Technologies for Veterinary Viral Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2465))

Abstract

Influenza A viruses (IAVs) infect a broad range of hosts, including multiple avian and mammalian species. The frequent emergence of novel IAV strains in different hosts, including in humans, results in the need for vigilance and ongoing development of new approaches to fighting or prevent those infections. Canine influenza is a contagious respiratory disease in dogs caused by two subtypes of IAV, the equine-origin H3N8 canine influenza virus (CIV), and the avian-origin H3N2 CIV. A novel approach to influenza vaccination involves single-cycle infectious influenza A viruses (sciIAVs), which are defective for an essential viral gene. They are propagated in complementing cell lines which provide the missing gene in trans. As sciIAV cannot complete their replication cycle in regular cells they are limited to a single round of viral replication. Because of their safety profile and ability to express foreign antigens inside infected cells, sciIAVs have served both as live-attenuated vaccines and as vaccine vectors for the expression of heterologous antigens. Here, we describe experimental procedures for the generation of a single-cycle infectious CIV (sciCIV), where the viral hemagglutinin (HA) gene was exchanged for the gene for green fluorescent protein (GFP). Complementation of the viral HA protein is provided in trans by stable HA-expressing cell lines. Methods for the in vitro characterization of HA deficient but GFP-expressing sciCIV (sciCIV ΔHA/GFP) are described, as well as its use as a potential vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw M, Palese P (2007) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA (eds) Fields virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  2. Hai R, Schmolke M, Varga ZT et al (2010) PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J Virol 84:4442–4450. https://doi.org/10.1128/JVI.02717-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nogales A, Martinez-Sobrido L, Topham DJ et al (2018) Modulation of innate immune responses by the influenza A NS1 and PA-X proteins. Viruses 10(12):708. https://doi.org/10.3390/v10120708. [pii] E708v10120708

    Article  CAS  PubMed Central  Google Scholar 

  4. Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409. https://doi.org/10.1074/jbc.R110.129809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wille M, Holmes EC (2019) The ecology and evolution of influenza viruses. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a038489. [pii] cshperspect.a038489

  6. Tong S, Zhu X, Li Y et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657. https://doi.org/10.1371/journal.ppat.1003657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nogales A, Martinez-Sobrido L (2016) Reverse genetics approaches for the development of influenza vaccines. Int J Mol Sci 18. https://doi.org/10.3390/ijms18010020. [pii] E20 ijms18010020

  8. Parrish CR, Murcia PR, Holmes EC (2015) Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J Virol 89:2990–2994. https://doi.org/10.1128/JVI.03146-14. [pii] JVI.03146-14

    Article  CAS  PubMed  Google Scholar 

  9. Sutton TC (2018) The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses 10:461. https://doi.org/10.3390/v10090461. [pii] E461. v10090461

    Article  CAS  PubMed Central  Google Scholar 

  10. (2015) Outbreak of canine influenza caused by new strain of virus. JAVMA 246:1049

    Google Scholar 

  11. Martinez-Sobrido L, Blanco-Lobo P, Rodriguez L et al (2020) Characterizing emerging canine H3 influenza viruses. PLoS Pathog 16:e1008409. https://doi.org/10.1371/journal.ppat.1008409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nogales A, Chauche C, DeDiego ML et al (2017) The K186E amino acid substitution in the canine influenza virus H3N8 NS1 protein restores its ability to inhibit host gene expression. J Virol 91(22):e00877-17. https://doi.org/10.1128/JVI.00877-17

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chauche C, Nogales A, Zhu H et al (2018) Mammalian adaptation of an avian influenza A virus involves stepwise changes in NS1. J Virol 92:e01875-17. https://doi.org/10.1128/JVI.01875-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deshpande MS, Jirjis FF, Tubbs AL et al (2009) Evaluation of the efficacy of a canine influenza virus (H3N8) vaccine in dogs following experimental challenge. Vet Ther 10:103–112

    PubMed  Google Scholar 

  15. Rodriguez L, Nogales A, Murcia PR et al (2017) A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses. Vaccine 35:4374–4381. https://doi.org/10.1016/j.vaccine.2017.06.060

    Article  CAS  PubMed  Google Scholar 

  16. Nogales A, Huang K, Chauche C et al (2017) Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology 500:1–10. https://doi.org/10.1016/j.virol.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  17. Nogales A, Rodriguez L, Chauche C et al (2017) Temperature-sensitive live-attenuated canine influenza virus H3N8 vaccine. J Virol 91:e02211-16. https://doi.org/10.1128/JVI.02211-16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez L, Nogales A, Reilly EC et al (2017) A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 504:96–106. https://doi.org/10.1016/j.virol.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  19. Shinya K, Fujii Y, Ito H et al (2004) Characterization of a neuraminidase-deficient influenza a virus as a potential gene delivery vector and a live vaccine. J Virol 78:3083–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wacheck V, Egorov A, Groiss F et al (2010) A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J Infect Dis 201:354–362. https://doi.org/10.1086/649428

    Article  CAS  PubMed  Google Scholar 

  21. Katsura H, Iwatsuki-Horimoto K, Fukuyama S et al (2012) A replication-incompetent virus possessing an uncleavable hemagglutinin as an influenza vaccine. Vaccine 30:6027–6033. https://doi.org/10.1016/j.vaccine.2012.07.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baker SF, Guo H, Albrecht RA et al (2013) Protection against lethal influenza with a viral mimic. J Virol 87:8591–8605. https://doi.org/10.1128/JVI.01081-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baker SF, Nogales A, Finch C et al (2014) Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J Virol 88:10778–10791. https://doi.org/10.1128/JVI.01440-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baker SF, Nogales A, Santiago FW et al (2015) Competitive detection of influenza neutralizing antibodies using a novel bivalent fluorescence-based microneutralization assay (BiFMA). Vaccine 33:3562–3570. https://doi.org/10.1016/j.vaccine.2015.05.049. [pii] S0264-410X(15)00701-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nogales A, Baker SF, Domm W et al (2016) Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 216:26–40. https://doi.org/10.1016/j.virusres.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  26. Dudek T, Knipe DM (2006) Replication-defective viruses as vaccines and vaccine vectors. Virology 344:230–239. https://doi.org/10.1016/j.virol.2005.09.020

    Article  CAS  PubMed  Google Scholar 

  27. Marsh GA, Hatami R, Palese P (2007) Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 81:9727–9736. https://doi.org/10.1128/JVI.01144-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe S, Watanabe T, Kawaoka Y (2009) Influenza A virus lacking M2 protein as a live attenuated vaccine. J Virol 83:5947–5950. https://doi.org/10.1128/JVI.00450-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Sobrido L, Cadagan R, Steel J et al (2010) Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies. J Virol 84:2157–2163. https://doi.org/10.1128/JVI.01433-09

    Article  CAS  PubMed  Google Scholar 

  30. Victor ST, Watanabe S, Katsura H et al (2012) A replication-incompetent PB2-knockout influenza A virus vaccine vector. J Virol 86:4123–4128. https://doi.org/10.1128/JVI.06232-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Powell TJ, Silk JD, Sharps J et al (2012) Pseudotyped influenza A virus as a vaccine for the induction of heterotypic immunity. J Virol 86:13397–13406. https://doi.org/10.1128/JVI.01820-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Uraki R, Kiso M, Iwatsuki-Horimoto K et al (2013) A novel bivalent vaccine based on a PB2-knockout influenza virus protects mice from pandemic H1N1 and highly pathogenic H5N1 virus challenges. J Virol 87:7874–7881. https://doi.org/10.1128/JVI.00076-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Engelhardt OG (2013) Many ways to make an influenza virus—review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 7:249–256. https://doi.org/10.1111/j.1750-2659.2012.00392.x

    Article  CAS  PubMed  Google Scholar 

  34. Nogales A, Perez DR, Santos J et al (2017) Reverse genetics of influenza B viruses. Methods Mol Biol 1602:205–238. https://doi.org/10.1007/978-1-4939-6964-7_14

    Article  CAS  PubMed  Google Scholar 

  35. Neumann G (2020) Influenza reverse genetics—historical perspective. Cold Spring Harbor Perspect Med. https://doi.org/10.1101/cshperspect.a038547

  36. Feng KH, Gonzalez G, Deng L et al (2015) Equine and canine influenza H3N8 viruses show minimal biological differences despite phylogenetic divergence. J Virol 89:6860–6873. https://doi.org/10.1128/JVI.00521-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quinlivan M, Zamarin D, Garcia-Sastre A et al (2005) Attenuation of equine influenza viruses through truncations of the NS1 protein. J Virol 79:8431–8439. https://doi.org/10.1128/JVI.79.13.8431-8439.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heix J, Grummt I (1995) Species specificity of transcription by RNA polymerase I. Curr Opin Genet Dev 5:652–656. https://doi.org/10.1016/0959-437x(95)80035-2

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz-Riaño E, Cheng BYH, de la Torre JC et al (2013) Arenavirus reverse genetics for vaccine development. J Gen Virol 94:1175–1188. https://doi.org/10.1099/vir.0.051102-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nerome K, Kumihashi H, Nerome R et al (1999) Evaluation of immune responses to inactivated influenza vaccines prepared in embryonated chicken eggs and MDCK cells in a mouse model. Dev Biol Stand 98:53–63; discussion 73-74

    CAS  PubMed  Google Scholar 

  41. Reale MA, Manheimer AJ, Moran TM et al (1986) Characterization of monoclonal antibodies specific for sequential influenza A/PR/8/34 virus variants. J Immunol 137:1352–1358

    CAS  PubMed  Google Scholar 

  42. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  43. Golde WT, Gollobin P, Rodriguez LL (2005) A rapid, simple, and humane method for submandibular bleeding of mice using a lancet. Lab Anim 34:39–43. https://doi.org/10.1038/laban1005-39

    Article  Google Scholar 

  44. Rodriguez L, Nogales A, Martinez-Sobrido L (2017) Influenza A virus studies in a mouse model of infection. J Vis Exp. https://doi.org/10.3791/55898

  45. Lanza AM, Kim DS, Alper HS (2013) Evaluating the influence of selection markers on obtaining selected pools and stable cell lines in human cells. Biotechnol J 8:811–821. https://doi.org/10.1002/biot.201200364

    Article  CAS  PubMed  Google Scholar 

  46. Bussow K (2015) Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 32:81–90. https://doi.org/10.1016/j.sbi.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigo WWSI, de la Torre JC, Martínez-Sobrido L (2011) Use of single-cycle infectious lymphocytic choriomeningitis virus to study hemorrhagic fever arenaviruses. J Virol 85:1684–1695. https://doi.org/10.1128/JVI.02229-10

    Article  CAS  PubMed  Google Scholar 

  48. Lindenmann J, Burke DC, Isaacs A (1957) Studies on the production, mode of action and properties of interferon. Br J Exp Pathol 38:551–562

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nogales A, Baker SF, Ortiz-Riano E et al (2014) Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol 88:10525–10540. https://doi.org/10.1128/JVI.01565-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Biodefense and Emerging Infectious Research Resources Repository (BEI Resources) for providing polyclonal antibody against A/equine/Miami/1/1963 (H3N8) (BEI Resources NR-3103). This research was partially funded by the New York Influenza Center of Excellence (NYICE), a member of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Department of Health and Human Services, Centers of Excellence for Influenza Research and Surveillance (CEIRS) contract No. HHSN272201400005C (NYICE). This research was partially funded by a “Ramon y Cajal” Incorporation grant (RYC-2017) from the Spanish Ministry of Science, Innovation and Universities to A.N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aitor Nogales or Luis Martínez-Sobrido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nogales, A., Chiem, K., Breen, M., DeDiego, M.L., Parrish, C.R., Martínez-Sobrido, L. (2022). Generation and Characterization of Single-Cycle Infectious Canine Influenza A Virus (sciCIV) and Its Use as Vaccine Platform. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 2465. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2168-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2168-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2167-7

  • Online ISBN: 978-1-0716-2168-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics