Skip to main content

Single-Cell Antibody Sequencing in Atherosclerosis Research

  • Protocol
  • First Online:
Atherosclerosis

Abstract

The transcriptomic information obtained by single cell RNA sequencing (scRNA-seq) can be supplemented by information on the cell surface phenotype by using oligonucleotide-tagged monoclonal antibodies (scAb-Seq). This is of particular importance in immune cells, where the correlation between mRNA and cell surface expression is very weak. scAb-Seq is facilitated by the availability of commercial antibodies and antibody mixes. Now panels of up to 200 antibodies are available for human and mouse cells. Proteins are detected by antibodies conjugated to a tripartite DNA sequence that contains a primer for amplification and sequencing, a unique oligonucleotide that acts as an antibody barcode and a poly(dA) sequence, simultaneously detecting extension of antibody-specific DNA sequences and cDNAs in the same poly(dT)-primed reaction. For each cell, surface protein expression is captured and sequenced along with the cell’s transcriptome. Here, we list the steps needed to produce antibody sequencing data from tissue or blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saigusa R, Winkels H, Ley K (2020) T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17:387–401

    Article  CAS  Google Scholar 

  2. Zernecke A, Winkels H, Cochain C et al (2020) Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ Res 127:402–426

    Article  CAS  Google Scholar 

  3. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203:1273–1282

    Article  CAS  Google Scholar 

  4. Winkels H, Ehinger E, Goshesh Y, Wolf D, Ley K (2018) Atherosclerosis in the single-cell era. Curr Opin Lipidol 29:389–396

    Article  CAS  Google Scholar 

  5. Fernandez DM, Rahman AH, Fernandez NF et al (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588

    Article  CAS  Google Scholar 

  6. Williams JW, Winkels H, Durant CP, Zaitsev K, Ghosheh Y, Ley K (2020) Single cell RNA sequencing in atherosclerosis research. Circ Res 126:1112–1126

    Article  CAS  Google Scholar 

  7. Winkels H, Ehinger E, Vassallo M et al (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122:1675–1688

    Article  CAS  Google Scholar 

  8. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba A-E, Zernecke A (2018) Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122:1661–1674

    Article  CAS  Google Scholar 

  9. Gu W, Ni Z, Tan Y-Q et al (2019) Adventitial cell atlas of wt (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler Thromb Vasc Biol 39:1055–1071

    Article  CAS  Google Scholar 

  10. Kim K, Shim D, Lee JS et al (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123:1127–1142

    Article  CAS  Google Scholar 

  11. Wirka RC, Wagh D, Paik DT et al (2019) Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 25:1280–1289

    Article  CAS  Google Scholar 

  12. Krämer A, Green J, Pollard J, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530

    Article  Google Scholar 

  13. Qiu X, Hill A, Packer J, Lin D, Ma Y-A, Trapnell C (2017) Single-cell mRNA quantification and differential analysis with census. Nat Methods 14:309–315

    Article  CAS  Google Scholar 

  14. Cohen M, Giladi A, Gorki A-D et al (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031–1044

    Article  CAS  Google Scholar 

  15. Kumar MP, Du J, Lagoudas G, Jiao Y, Sawyer A, Drummond DC, Lauffenburger DA, Raue A (2018) Analysis of single-cell RNA-seq identifies cell-cell communication associated with tumor characteristics. Cell Rep 25:1458–1468.e4

    Article  CAS  Google Scholar 

  16. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15:1484–1506

    Article  CAS  Google Scholar 

  17. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868

    Article  CAS  Google Scholar 

  18. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S, Klappenbach JA (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939

    Article  CAS  Google Scholar 

  19. Todorovic V (2017) Single-cell RNA-seq—now with protein. Nat Methods 14:1028–1029

    Article  CAS  Google Scholar 

  20. Fan HC, Fu GK, Fodor SPA (2015) Combinatorial labeling of single cells for gene expression cytometry. Science 347:1258367

    Article  Google Scholar 

  21. Mair F, Erickson JR, Voillet V, Simoni Y, Bi T, Tyznik AJ, Martin J, Gottardo R, Newell EW, Prlic M (2020) A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep 31:107499

    Article  CAS  Google Scholar 

  22. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C (2018) Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 114:1360–1371

    Article  CAS  Google Scholar 

  23. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  CAS  Google Scholar 

  24. Robinson JP, Roederer M (2015) History of science. Flow cytometry strikes gold. Science 350:739–740

    Article  CAS  Google Scholar 

  25. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550

    Article  CAS  Google Scholar 

  26. Lundberg E, Fagerberg L, Klevebring D, Matic I, Geiger T, Cox J, Algenäs C, Lundeberg J, Mann M, Uhlen M (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  Google Scholar 

  27. Vallejo J, Saigusa R, Gulati R, et al (2020) Combined protein and transcript single cell RNA sequencing reveals cardiovascular disease and HIV signatures bioRxiv 2020.09.10.292086

    Google Scholar 

  28. Melsted P, Booeshaghi AS, Gao F, Beltrame E, Lu L, Hjorleifsson KE, Gehring J, Pachter L (2019) Modular and efficient pre-processing of single-cell RNA-seq bioRxiv 673285

    Google Scholar 

  29. Hao Y, Hao S, Andersen-Nissen E, et al (2020) Integrated analysis of multimodal single-cell data. bioRxiv 2020.10.12.335331

    Google Scholar 

  30. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420

    Article  CAS  Google Scholar 

  31. Korsunsky I (2019) Fast, sensitive and accurate integration of single-cell data with harmony. Nat Methods 16:16

    Article  Google Scholar 

  32. Hwang B, Lee JH, Bang D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 50:1–14

    Article  CAS  Google Scholar 

  33. Efremova M, Teichmann SA (2020) Computational methods for single-cell omics across modalities. Nat Methods 17:14–17

    Article  CAS  Google Scholar 

  34. Xi NM, Li JJ (2021) Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst 12:176–194.e6

    Article  CAS  Google Scholar 

  35. Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29

    Article  Google Scholar 

  36. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J (2020) A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 21:12

    Article  CAS  Google Scholar 

  37. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW (2019) Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 37:38–44

    Article  CAS  Google Scholar 

  38. Emmons S, Kobourov S, Gallant M, Börner K (2016) Analysis of network clustering algorithms and cluster quality metrics at scale. PLoS One 11:e0159161

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Uehara Memorial foundation fellowship to R.S., NIH HL 136275, 145241, and 148094 to K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saigusa, R., Durant, C.P., Suryawanshi, V., Ley, K. (2022). Single-Cell Antibody Sequencing in Atherosclerosis Research. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_46

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics