Skip to main content

Calcium Regulation and Signaling in Apicomplexan Parasites

  • Chapter
Molecular Mechanisms of Parasite Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 47))

Abstract

Apicomplexan parasites rely on calcium-mediated signaling for a variety of vital functions including protein secretion, motility, cell invasion, and differentiation. These functions are controlled by a variety of specialized systems for uptake and release of calcium, which acts as a second messenger, and on the functions of calcium-dependent proteins. Defining these systems in parasites has been complicated by their evolutionary distance from model organisms and practical concerns in working with small, and somewhat fastidious cells. Comparative genomic analyses of Toxoplasma gondii, Plasmodium spp. and Cryptosporidium spp. reveal several interesting adaptations for calcium-related processes in parasites. Apicomplexans contain several P-type Ca2+ ATPases including an ER-type reuptake mechanism (SERCA), which is the proposed target of artemisinin. All three organisms also contain several genes related to Golgi PMR-like calcium transporters, and a Ca2+/H+ exchanger, while plasma membrane-type (PMCA) Ca2+ ATPases and voltage-dependent calcium channels are exclusively found in T. gondii. Pharmacological evidence supports the presence of IP3 and ryanodine channels for calcium-mediated release. Collectively these systems regulate calcium homeostasis and release calcium to act as a signal. Downstream responses are controlled by a family of EF-hand containing calcium binding proteins including calmodulin, and an array of centrin and caltractin-like genes. Most surprising, apicomplexans contain a diversity of calcium-dependent protein kinases (CDPK), which are commonly found in plants. Toxoplasma contains more than 20 CDPK or CDPK-like proteases, while Plasmodium and Cryptosporidium have fewer than half this number. Several of these CDPKs have been shown to play vital roles in protein secretion, invasion, and differentiation, indicating that disruption of calcium-regulated pathways may provide a novel means for selective inhibition of parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldauf SL. The deep roots of eukaryotes. Science 2003; 300:1703–1706.

    Article  PubMed  CAS  Google Scholar 

  2. Foth BJ, McFadden GI. The apicoplast: A plastid in Plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol 2003; 224:57–110.

    Article  PubMed  Google Scholar 

  3. Dzierszinski F, Popescu O, Toursel C et al. The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J Biol Chem 1999; 274:24888–24895.

    Article  PubMed  CAS  Google Scholar 

  4. Morrissette NS, Mitra A, Sept D et al. Dinitroanalines bind alpha-tubulin to disrupt microtubules. Molec Bio Cell 2004; 15:1960–1968.

    Article  CAS  Google Scholar 

  5. Huang J, Mullapudi N, Sicheritz-Ponten T et al. A first glimpse into the pattern and scale of gene transfer in the Apicomplexa. Intl J Parasitol 2004; 34:265–274.

    Article  CAS  Google Scholar 

  6. Eckstein-Ludwig U, Webb RJ, van Goethem IDA et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424:957–961.

    Article  PubMed  CAS  Google Scholar 

  7. Berridge MJ, Lipp P, Bootman MD. Signal transduction. The calcium entry pas de deux. Science 2000; 287:1604–1605.

    Article  PubMed  CAS  Google Scholar 

  8. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 2000; 1:11–21.

    Article  PubMed  CAS  Google Scholar 

  9. Tsien RW. Calcium channels, stores, and oscillations. Annu Rev Cell Biol 1990; 6:715–760.

    Article  PubMed  CAS  Google Scholar 

  10. Moreno SNJ, Zhong L. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J 1996; 313:655–659.

    PubMed  CAS  Google Scholar 

  11. Garcia CRS. Calcium homeostasis and signaling in the blood-stage malaria parasite. Parasitol Today 1999; 15:11–17.

    Google Scholar 

  12. Rohrback P, Freidrich O, Hentschel J et al. Quantitative calcium measurements in subcellular compartments of Plasmodium falciparum infected erythrocytes. J Biol Chem 2005; 280:27960–27969.

    Article  CAS  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985; 260:3440–3450.

    PubMed  CAS  Google Scholar 

  14. Gazarini ML, Garcia CR. The malaria parasite mitochondrion senses cytosolic Ca2+ fluctuations. Biochem Biophys Res Comm 2004; 321:138–144.

    Article  PubMed  CAS  Google Scholar 

  15. Uyemura SA, Luo S, Moreno SN et al. Oxidative phosphorylation, Ca2+ transport, and fatty acid-induce uncoupling in malaria parasites mitochondria. J Biol Chem 2000; 275:9709–9715.

    Article  PubMed  CAS  Google Scholar 

  16. Luo S, Vieira M, Graves J et al. A plasma membrane-type Ca2+-ATPase colocalizes with a vacuolar H+-pyrophosphatase to acidocalcisomes of Toxoplasma gondii. EMBO J 2001; 20:55–64.

    Article  PubMed  CAS  Google Scholar 

  17. Marchesini N, Luo S, Rodrigues CO et al. Acidocalcisomes and vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 2000; 347 (Pt 1):243–253.

    Article  PubMed  CAS  Google Scholar 

  18. Docampo R, Souza W, Miranda K et al. Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 2005; 3:251–261.

    Article  PubMed  CAS  Google Scholar 

  19. Bouchot A, Jaillet JD, Bonhomme A et al. Detection and localization of a Ca2+-ATPase activity in Toxoplasma gondii. Cell Struct Funct 2001; 26:49–60.

    Article  PubMed  CAS  Google Scholar 

  20. Moreno SNJ, Zhong L, Lu HG et al. Vacuolar-type H+-ATPase regulates cytoplasmic pH in Toxoplasma gondii tachyzoites. Biochem J 1998; 330:853–860.

    PubMed  CAS  Google Scholar 

  21. Rodrigues CO, Scott DA, Bailey BN et al. Vacuolar proton pyrophosphatase activity and pyrophosphate [PPi] in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 2000; 349:737–745.

    PubMed  CAS  Google Scholar 

  22. Rodrigues CO, Ruiz FA, Rohloff P et al. Characterization of isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolyzable polyphosphate. J Biol Chem 2002; 277:48650–48656.

    Article  PubMed  CAS  Google Scholar 

  23. Ruiz FA, Luo S, Moreno SN et al. Polyphosphate content and fine structure of acidocalcisomes of Plasmodium falciparum. Microsc Microanal 2004; 10:563–567.

    Article  PubMed  CAS  Google Scholar 

  24. Biagini GA, Bray PG, Spiller DG et al. The digestive food vacuole of the malaria parasite is a dynamic intracellular Ca2+ store. J Biol Chem 2003; 278:27910–27915.

    Article  PubMed  CAS  Google Scholar 

  25. Nagata T, Iizumi S, Satoh K et al. Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Molec Biol Evol 2004; 21:1855–1870.

    Article  PubMed  CAS  Google Scholar 

  26. Luo S, Ruiz FA, Moreno SN. The acidocalcisome Ca2+ ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Molec Micro 2005; 55:1034–1045.

    Article  CAS  Google Scholar 

  27. Nagamune K, Sibley LD. Comparative genomic analysis of calcium ATPases and calcium-regulated proteins in the Apicomplexa. Molec Biol Evol 2006; 23:1613–1627.

    Article  PubMed  CAS  Google Scholar 

  28. Dyer M, Jackson M, McWhinney C et al. Analysis of a cation-transporting ATPase of Plasmodium falciparum. Mol Biochem Parasitol 1996; 78:1–12.

    Article  PubMed  CAS  Google Scholar 

  29. Krishna S, Woodrow C, Webb R et al. Expression and functional characterization of a Plasmodium falciparum Ca2+-ATPase (PfATP4) belonging to a subclass unique to apicomplexan organisms. J Biol Chem 2001; 276:10782–10787.

    Article  PubMed  CAS  Google Scholar 

  30. Haynes WJ, Vaillant B, Preston RR et al. The cloning by complementation of the pawn-A gene in Paramecium. Genetics 1998; 149:947–957.

    PubMed  CAS  Google Scholar 

  31. Furuichi T, Cunningham KW, Muto S. A putative two pore channel AtTCP1 mediate Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 2001; 42:900–905.

    Article  PubMed  CAS  Google Scholar 

  32. Berridge MJ. Inositol triphosphate and calcium signalling. Nature 1993; 361:315–325.

    Article  PubMed  CAS  Google Scholar 

  33. Guse AH. Cyclic ADP-ribose: A novel Ca2+-mobilising second messenger. Cell Signal 1999; 11:309–316.

    Article  PubMed  CAS  Google Scholar 

  34. Berridge MJ. Capacitive calcium entry. Biochem J 1995; 312:1–11.

    PubMed  CAS  Google Scholar 

  35. Chini EN, De Toledo FGS. Nicotinic acid adenine dinucleotide phosphate: A new intracellular second messenger? Amer J Physiol 2002; 282:C1191–1198.

    CAS  Google Scholar 

  36. Churchill GC, Okada Y, Thomas JM et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related stores, in sea urchin eggs. Cell 2002; 111:703–708.

    Article  PubMed  CAS  Google Scholar 

  37. Lovett JL, Marchesini N, Moreno SN et al. Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from IP3 / ryanodine sensitive stores. J Biol Chem 2002; 277:25870–25876.

    Article  PubMed  CAS  Google Scholar 

  38. Wuytack F, Raeymaekers L, Missiaen L. Molecular physiology of the SERCA and SPCA pumps. Cell Calcium 2002; 35:279–305.

    Article  Google Scholar 

  39. Toyoshima C, Inesi G. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 2004; 73:269–292.

    Article  PubMed  CAS  Google Scholar 

  40. Toyoshima C, Nakasako M, Nomura H et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 2000; 405:647–655.

    Article  PubMed  CAS  Google Scholar 

  41. Toyoshima C, Mizutani T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 2004; 430:529–535.

    Article  PubMed  CAS  Google Scholar 

  42. Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 2002; 418:605–611.

    Article  PubMed  CAS  Google Scholar 

  43. Kimura M, Yamaguchi Y, Takada S et al. Cloning of a Ca2+-ATPase gene of Plasmodium falciparum and comparison with vertebrate Ca2+-ATPases. J Cell Sci 1993; 104:1129–1136.

    PubMed  CAS  Google Scholar 

  44. Thastrup O, Cullen PJ, Drobak BK et al. Thapsigargin, a tumor promotor, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 1990; 87:2766–2470.

    Article  Google Scholar 

  45. Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 1991; 266:13503–13506.

    PubMed  CAS  Google Scholar 

  46. Sagara Y, Wade JB, Inesi G. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem 1992; 267:1286–1292.

    PubMed  CAS  Google Scholar 

  47. Carruthers VB, Moreno SNJ, Sibley LD. Ethanol and acetaldehyde elevate intracellular [Ca2+] calcium and stimulate microneme discharge in Toxoplasma gondii. Biochem J 1999; 342:379–386.

    Article  PubMed  CAS  Google Scholar 

  48. Varotti FP, Beraldo FH, Gazarini ML et al. Plasmodium falciparum malaria parasites display a THG-sensitive Ca2+ pool. Cell Calcium 2003; 33:137–144.

    Article  PubMed  CAS  Google Scholar 

  49. O’Neill PM. Medicinal chemistry: A worthy adversary for malaria. Nature 2004; 430:838–839.

    Article  PubMed  CAS  Google Scholar 

  50. Haynes RK, Krishna S. Artemisinins: Activities and actions. Microb Infect 2004; 6:1339–1346.

    Article  CAS  Google Scholar 

  51. Uhlemann AC, Cameron A, Eckstein-Ludwig U et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Molec Biol 2005; 12:628–629.

    Article  CAS  Google Scholar 

  52. Berens RL, Krug EC, Nash PB et al. Selection and characterization of Toxoplasma gondii mutants resistant to artemisinin. J Infect Dis 1998; 177:1128–1131.

    Article  PubMed  CAS  Google Scholar 

  53. Sarciron ME, Saccharin C, Petavy AF et al. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am J Trop Med Hyg 2000; 62:73–76.

    PubMed  CAS  Google Scholar 

  54. Ngo T, Duraisingh M, Reed MB et al. Analysis of PFCRT, PFMDR1, DHFR, and DHPS mutations and drug sensitivities in Plasmodium falciparum isolates from patietns in Vietnam before and after treatment with artemisinin. Am J Trop Med Hyg 2003; 68:350–356.

    PubMed  CAS  Google Scholar 

  55. Roos DS, Donald RGK, Morrissette NS et al. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 1994; 45:28–61.

    Google Scholar 

  56. Meisner M, Brecht S, Bujard H et al. Modulation of myosin A expression by a newly established tetracydine repressor based inducible system in Toxoplasma gondii. Nuc Acids Res 2001; 29:E115.

    Article  Google Scholar 

  57. Carruthers VB, Giddings OK, Sibley LD. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1999; 1:225–236.

    Article  PubMed  CAS  Google Scholar 

  58. Chen XM, O’Hara SP, Huang BQ et al. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect Immun 2004; 72:6806–6816.

    Article  PubMed  CAS  Google Scholar 

  59. Gantt S, Persson C, Rose K et al. Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infect Immun 2000; 68:3667–3673.

    Article  PubMed  CAS  Google Scholar 

  60. Ward GE, Fujioka H, Aikawa M et al. Staurosporine inhibits invasion of erythrocytes by malarial merozoites. Exper Parasitol 1994; 79:480–487.

    Article  CAS  Google Scholar 

  61. Kieschnick H, Wakefield T, Narducci CA et al. Toxoplasma gondii attachment to host cells is regulated by a calmodulin-like domain protein kinase. J Biol Chem 2001; 276:12369–12377.

    Article  PubMed  CAS  Google Scholar 

  62. Wiersma HI, Galuska SE, Tomley FM et al. A role for coccidian cGMP-dependent protein kinase in motility and invasion. Intl J Parasit 2004; 34:369–380.

    Article  CAS  Google Scholar 

  63. Fang J, Marchesini N, Moreno SNJ. A Toxoplasma gondii phosphoinositde phospholipase C (TgPI-PLC) with high affinity for phosphatidylinositol. Biochem J 2006; 394:417–425.

    Article  PubMed  CAS  Google Scholar 

  64. Chini EN, Nagamune K, Wetzel DM et al. Evidence that the cADPR signaling pathway controls calcium-mediated secretion in Toxoplasma gondii. Biochem J 2005; 389:269–277.

    Article  PubMed  CAS  Google Scholar 

  65. Sibley LD. Invasion strategies of intracellular parasites. Science 2004; 304:248–253.

    Article  PubMed  CAS  Google Scholar 

  66. Lovett JL, Sibley LD. Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 2003; 116:3009–3016.

    Article  PubMed  CAS  Google Scholar 

  67. Wetzel DM, Chen LA, Ruiz FA et al. Calcium-mediated protein secretion potentiates motility by Toxoplasma gondii. J Cell Sci 2004; 117:5739–5748.

    Article  PubMed  CAS  Google Scholar 

  68. Vieira MCF, Moreno SNJ. Mobilization of intracellular calcium upon attachment of Toxoplasma gondii tachyzoites to human fibroblasts is required for invasion. Mol Biochem Parasitol 2000; 106:157–162.

    Article  PubMed  CAS  Google Scholar 

  69. Endo T, Sethi KK, Piekarski G. Toxoplasma gondii: Calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp Parasitol 1982; 53:179–188.

    Article  PubMed  CAS  Google Scholar 

  70. Moudy R, Manning TJ, Beckers CJ. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J Biol Chem 2001; 276:41492–41501.

    Article  PubMed  CAS  Google Scholar 

  71. Seeber F, Beuerle B, Schmidt HH. Cloning and functional expression of the calmodulin gene from Toxoplasma gondii. Mol Biochem Parasitol 1999; 99:295–299.

    Article  PubMed  CAS  Google Scholar 

  72. Song HO, Ahn MH, Ryu JS et al. Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii. Korean J Parasitol 2004; 42:185–193.

    Article  PubMed  Google Scholar 

  73. Hu K, Johnson J, Florens L et al. Cytoskeletal components of an invasion machine—The apical complex of Toxoplasma gondii. PLos Path 2006; 2:121–138.

    CAS  Google Scholar 

  74. Robson KJH, Jennings MW. The structure of calmodulin gene in Plasmodium falciparum. Molec Biochem Parasitol 1991; 46:19–34.

    Article  CAS  Google Scholar 

  75. Matsomoto Y, G P, Scheibel LW et al. Role for calmodulin in Plasmodium falciparum: Implications for erythrocyte invasion by the merozoites. Eur J Cell Biol 1987; 45:36–43.

    Google Scholar 

  76. Salisbury JL. Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 1995; 7:39–45.

    Article  PubMed  CAS  Google Scholar 

  77. Striepen B, Crawford MJ, Shaw MK et al. The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 2000; 151:1423–1434.

    Article  PubMed  CAS  Google Scholar 

  78. Gonda K, Yoshida A, Oami K et al. Centrin is essential for the activity of the ciliary reversal-coupled voltage-gated Ca2+ channels. Biochem Biophys Res Commun 2004; 323:891–897.

    Article  PubMed  CAS  Google Scholar 

  79. Molinier J, Ramos C, Fritsch O et al. CENTRIN2 modulates homologous recombination and nuclear excision repair in Arabidopsis. Plant Cell 2004; 16:1633–1643.

    Article  PubMed  CAS  Google Scholar 

  80. Guerra C, Wada Y, Leick V et al. Cloning, localization, and axonemal function of Tetrahymena centrin. Mol Biol Cell 2003; 14:251–261.

    Article  PubMed  CAS  Google Scholar 

  81. Cheng SH, Willmann MR, Chen HC et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 2002; 129:469–485.

    Article  PubMed  CAS  Google Scholar 

  82. Dobrowolski JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 1997; 26:163–173.

    Article  PubMed  CAS  Google Scholar 

  83. Billker O, Tewari R, Franke-Fayard B et al. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 2004; 117:503–514.

    Article  PubMed  CAS  Google Scholar 

  84. Siden-Kiamos I, Ecker A, Nyback S et al. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding and mosquito midgut invasion. Molec Micro 2006; 60:1355–1363.

    Article  CAS  Google Scholar 

  85. Ishino T, Orito Y, Chinzei Y et al. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Molec Micro 2006; 59:1175–1184.

    Article  CAS  Google Scholar 

  86. Billker O, Lindo V, Panico M et al. Identification of xanthurenic acid as a putative inducer of malaria development in the mosquito. Nature (Lond.) 1998; 392:289–292.

    Article  PubMed  CAS  Google Scholar 

  87. Martin SK, Jett M, Schneider I. Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. J Parasitol 1994; 80:371–378.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. David Sibley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Nagamune, K., Moreno, S.N., Chini, E.N., Sibley, L.D. (2008). Calcium Regulation and Signaling in Apicomplexan Parasites. In: Burleigh, B.A., Soldati-Favre, D. (eds) Molecular Mechanisms of Parasite Invasion. Subcellular Biochemistry, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78267-6_5

Download citation

Publish with us

Policies and ethics