Skip to main content

Carbon Nanostructures as a New High-Performance Platform for MR Molecular Imaging

  • Chapter
Bio-Applications of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 620))

Abstract

Over the last several years, great interest has developed in the potential use of carbon nanostructures (C60 fullerenes and nanotubes) in medicine. In some cases, medical agents derived from these materials have demonstrated greater efficacy than existing clinical agents in many imaging and therapeutic applications. This chapter provides an overall review of the application of these materials in the area of magnetic resonance imaging (MRI), with an emphasis on their future applications in targeted MR molecular imaging for the early detection of cancer and other life-threatening diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto HW, Heath JR, O’Brien SC et al. C60: Buckminsterfullerene. Nature (London, United Kingdom) 1985; 318(6042): 162–163.

    Article  CAS  Google Scholar 

  2. Arico AS, Bruce P, Scrosati B et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials 2005; 4(5):366–377.

    Article  PubMed  CAS  Google Scholar 

  3. Gomez-Romero P, Cuentas-Gallegos K, Lira-Cantu M et al. Hybrid nanocomposite materials for energy storage and conversion applications. J Mat Sci 2005; 40(6):1423–1428.

    Article  CAS  Google Scholar 

  4. Seminario JM. Molecular electronics. Approaching reality. Nature Materials 2005; 4(2):111–113.

    Article  PubMed  CAS  Google Scholar 

  5. Balandin AA. Nanophonomics: Phonon engineering in nanostructures and nanodevices. Journal of Nanoscience and Nanotechnology 2005; 5(7):1015–1022.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson BFG. Nanoparticles in Catalysis. Topics in Catalysis 2003; 24(1–4):147–159.

    Article  CAS  Google Scholar 

  7. Arepalli S, Fireman H, Huffman C et al. Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications. J of Mat 2005; 57(12):26–31.

    CAS  Google Scholar 

  8. Sharma SK, Kumar R, Dolia SN et al. Magnetic nanoparticles for space applications. Materials Research Society Symposium Proceedings 2005; 851:481–486.

    CAS  Google Scholar 

  9. Alexson D, Chen H, Cho M, et al. Semiconductor nanostructures in biological applications. J Phys: Condensed Matter 2005; 17(26):R637–R656.

    Article  CAS  Google Scholar 

  10. Zakharian TY, Seryshev A, Sitharaman B et al. A Fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc 2005; 127(36):12508–12509.

    Article  PubMed  CAS  Google Scholar 

  11. Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 2003; 100(23):13549–13554.

    Article  PubMed  CAS  Google Scholar 

  12. Cagle DW, Kennel SJ, Mirzadeh S et al. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. PNAS 1999; 96(9):5182–5187.

    Article  PubMed  CAS  Google Scholar 

  13. Merbach AE, Toth E, eds. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Chichester: John Wiley and Sons, 2001.

    Google Scholar 

  14. Muller RN, Vander Elst L, Rinck PA et al. The importance of nuclear magnetic relaxation dispersion (NMRD) profiles in MRI contrast media development. Inv Rad 1988; 23(Suppl 1):S229–231.

    Google Scholar 

  15. Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev 1987; 87:901–927.

    Article  CAS  Google Scholar 

  16. Stevenson S, Fowler PW, Heine T et al. A stable nonclassical metallofullerene family. Nature (London) 2000; 408(6811):427–428.

    Article  CAS  Google Scholar 

  17. Stevenson S, Rice G, Glass T et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature (London) 1999; 401(6748):55–57.

    Article  CAS  Google Scholar 

  18. Cioslowski J, Fleischmann ED. Endohedral complexes: Atoms and ions inside the carbon sixty-atom molecule (C60)

    Google Scholar 

  19. Bolskar RD, Benedetto AF, Husebo LO et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 2003; 125(18):5471–5478.

    Article  PubMed  CAS  Google Scholar 

  20. Mikawa M, Kato H, Okumura M et al. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconj Chem 2001; 12(4):510–514.

    Article  CAS  Google Scholar 

  21. Toth E, Bolskar RD, Borel A et al. Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005; 127(2):799–805.

    Article  PubMed  CAS  Google Scholar 

  22. Bloembergen N, Morgan LO. Proton relaxation times in paramagnetic solutions effects of electron spin relaxation. J Chem Phys 1961; 34:842–850.

    Article  CAS  Google Scholar 

  23. Bloembergen N. Proton relaxation times in paramagnetic solutions. J Chem Phys 1957; 27:572–573.

    Article  CAS  Google Scholar 

  24. Solomon I, Bloembergen N. Nuclear magnetic interactions in the HF molecule. J Chem Phys 1956; 25:261–266.

    Article  CAS  Google Scholar 

  25. Solomon I. Relaxation processes in a system of two spins. Phys Rev 1955; 99:559–565.

    Article  CAS  Google Scholar 

  26. Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 1948; 73:679–712.

    Article  CAS  Google Scholar 

  27. Bertini I, Galas O, Luchinat C et al. A computer program for the calculation of paramagnetic enhancements of nuclear-relaxation rates in slowly rotating systems. J Mag Res A 1995; 113(2):151–158.

    Article  CAS  Google Scholar 

  28. Sitharaman B, Bolskar RD, Rusakova I et al. Gd@C60[C(COOH)2]10 and Gd@C60(OH)x: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett 2004; 4(12):2373–2378.

    Article  CAS  Google Scholar 

  29. Laus S, Sitharaman B, Tóth É et al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10. J Am Chem Soc 2005; 127(26):9368–9369.

    Article  PubMed  CAS  Google Scholar 

  30. Stevenson S, Phillips JP, Reid JE et al. Pyramidalization of Gd3N inside a C80 cage. Chem Commun (Cambridge, United Kingdom) 2004; (24):2814–2815.

    Article  Google Scholar 

  31. Stevenson S, Stephen RR, Amos TM et al. Synthesis and purification of a metallic nitride fullerene bisadduct: Exploring the reactivity of Gd3N@C80. J Am Chem Soc 2005; 127(37):12776–12777.

    Article  PubMed  CAS  Google Scholar 

  32. Sitharaman B, Kissell KR, Hartman KB et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem Commun (Cambridge, United Kingdom) 2005; (31):3915–3917.

    Article  Google Scholar 

  33. Gu Z, Peng H, Hauge RH et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett 2002; 2(9):1009–1013.

    Article  CAS  Google Scholar 

  34. Girifalco LA, Hodak M, Lee RS. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 2000; 62(19):13104–13110.

    Article  CAS  Google Scholar 

  35. Bachilo SM, Strano MS, Kittrell C et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science (Washington, DC, United States) 2002; 298(5602):2361–2366.

    Article  CAS  Google Scholar 

  36. Moore VC, Strano MS, Haroz EH et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 2003; 3(10):1379–1382.

    Article  CAS  Google Scholar 

  37. Penicaud A, Poulin P, Derre A et al. Spontaneous dissolution of a single-wall carbon nanotube salt. J Am Chem Soc 2005; 127(1):8–9.

    Article  PubMed  CAS  Google Scholar 

  38. Sauvajol JL, Bendiab N, Anglaret E et al. Phonons in alkali-doped single-wall carbon nanotube bundles. Comptes Rendus Physique 2003; 4(9):1035–1045.

    Article  CAS  Google Scholar 

  39. Kim UJ, Gutierrez HR, Kim JP et al. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes. J Phys Chem B 2005; 109(49):23358–23365.

    Article  PubMed  CAS  Google Scholar 

  40. Worsley KA, Moonoosawmy KR, Kruse P. Long-range periodicity in carbon nanotube sidewall functionalization. Nano Lett 2004; 4(8):1541–1546.

    Article  CAS  Google Scholar 

  41. Coleman KS, Bailey SR, Fogden S et al. Functionalization of single-walled carbon nanotubes via the bingel reaction. J Am Chem Soc 2003; 125(29):8722–8723.

    Article  PubMed  CAS  Google Scholar 

  42. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Can Res 2004; 64(21):8009–8014.

    Article  CAS  Google Scholar 

  43. Ashcroft JM, Tsyboulski DA, Hartman KB et al. Fullerene (C60) immunoconjugates: Interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem Commun (Cambridge, United Kingdom) 2006; 3004–3006.

    Google Scholar 

  44. Goodwin DA. Strategies for antibody targeting. Antibody, Immunoconjugates, and Radiopharmaceuticals. 1991; 4(4):427–434.

    CAS  Google Scholar 

  45. Courtenay-Luck NS, Epenetos AA. Targeting of monoclonal antibodies to tumors. Current Opinion in Immunology 1990; 2(6):880–883.

    Article  CAS  Google Scholar 

  46. Pantarotto D, Briand JP, Prato M et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Cambridge, United Kingdom) 2004; (1):16–17.

    Article  Google Scholar 

  47. Kam NWS, Jessop TC, Wender PA et al. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 2004; 126(22):6850–6851.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hartman, K.B., Wilson, L.J. (2007). Carbon Nanostructures as a New High-Performance Platform for MR Molecular Imaging. In: Chan, W.C.W. (eds) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, vol 620. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76713-0_6

Download citation

Publish with us

Policies and ethics