Skip to main content

Complications of Ablative and Nonablative Lasers and Light Sources

  • Chapter
Complications in Cutaneous Surgery

Abstract

Complications of cutaneous laser surgery can be understood by reviewing the evolution of laser technology over the past several decades. Lasers initially were designed to operate in a continuous-wave (CW) mode, which produced a continuous beam of radiation that subsequently was absorbed by a tissue chromophore. Although particular skin structures could be destroyed using these early lasers, their use was limited because the energy emitted not only altered the target, but also conducted heat into adjacent nonirradiated tissue. The nonselective thermal injury produced in adjacent tissue resulted in significant side effects and complications; specifically, dyspigmentation, and scarring.13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanzi EL, Lupton JR, Alster TS. Review of lasers in dermatology: four decades of progress. J Am Acad Dermatol 2003;49:1–31.

    Article  PubMed  Google Scholar 

  2. Lanzafame RJ, Naim JO, Rogers DW, Hinshaw JR. Comparisons of continuous-wave, chop wave, and superpulsed laser wounds. Lasers Surg Med 1988;8:119–124.

    Article  CAS  PubMed  Google Scholar 

  3. Alster TS, Lupton JR. An overview of cutaneous laser resurfacing. Clin Plast Surg 2001;28:37–52.

    CAS  PubMed  Google Scholar 

  4. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;22:524–527.

    Article  Google Scholar 

  5. Alster TS. Preoperative preparation for CO2 laser resurfacing. In: Coleman WP, Lawrence N, eds. Skin resurfacing. Baltimore: Williams & Wilkins; 1998:171–179.

    Google Scholar 

  6. Alster TS. Cutaneous resurfacing with CO2 and erbium: YAG lasers: preoperative, intraoperative, and postoperative consideration. Plast Reconstr Surg 1999;103:619–632.

    Article  CAS  PubMed  Google Scholar 

  7. Alster TS, Lupton JR. Prevention and treatment of side effects and complications of cutaneous laser resurfacing. Plast Reconstr Surg 2002;109:308–316.

    Article  PubMed  Google Scholar 

  8. Alster TS, Kauvar ANB, Geronemus RG. Histology of high-energy pulsed CO2 laser resurfacing. Semin Cutan Med Surg 1996;15:189–193.

    Article  CAS  PubMed  Google Scholar 

  9. Alster TS, Garg S. Treatment of facial rhytides with a high-energy pulsed carbon dioxide laser. Plast Reconstr Surg 1996;98:791–794.

    Article  CAS  PubMed  Google Scholar 

  10. Alster TS, Nanni CA, Williams CM. Comparison of four carbon dioxide resurfacing lasers: a clinical and histopathologic evaluation. Dermatol Surg 1999;25:153–159.

    Article  CAS  PubMed  Google Scholar 

  11. Lowe NJ, Lask G, Griffin ME, et al. Skin resurfacing with the ultrapulse carbon dioxide laser: observations on 100 patients. Dermatol Surg 1995;21:1025–1029.

    Article  CAS  PubMed  Google Scholar 

  12. Alster TS. Comparison of two high-energy, pulsed carbon dioxide lasers in the treatment of periorbital rhytides. Dermatol Surg 1996;22:541–545.

    Article  CAS  PubMed  Google Scholar 

  13. Apfelberg DB. Ultrapulse carbon dioxide laser with CPG scanner for full-face resurfacing of rhytides, photoaging, and acne scars. Plast Reconstr Surg 1997;99:1817–1825.

    Article  CAS  PubMed  Google Scholar 

  14. Lask G, Keller G, Lowe NJ, et al. Laser skin resurfacing with the SilkTouch flashscanner for facial rhytides. Dermatol Surg 1995;21:1021–1024.

    Article  CAS  PubMed  Google Scholar 

  15. Waldorf HA, Kauvar ANB, Geronemus RG. Skin resurfacing of fine to deep rhytides using a char-free carbon dioxide laser in 47 patients. Dermatol Surg 1995;21:940–946.

    Article  CAS  PubMed  Google Scholar 

  16. Ratner D, Tse Y, Marchell N, et al. Cutaneous laser resurfacing. J Am Acad Dermatol 1999;41:365–389.

    Article  CAS  PubMed  Google Scholar 

  17. Walsh JT, Deutsch TF. Pulsed CO2 laser tissue ablation: measurement of the ablation rate. Lasers Surg Med 1988;8:264–275.

    Article  PubMed  Google Scholar 

  18. Fitzpatrick RE, Ruiz-Esparza J, Goldman MP. The depth of thermal necrosis using the CO2 laser: a comparison of the superpulsed mode and conventional mode. J Dermatol Surg Oncol 1991;17:340–344.

    CAS  PubMed  Google Scholar 

  19. Stuzin JM, Baker TJ, Baker TM, et al. Histologic effects of the high-energy pulsed CO2 laser on photo-aged facial skin. Plast Reconstr Surg 1997;99:2036–2050.

    Article  CAS  PubMed  Google Scholar 

  20. Walsh JT, Flotte TJ, Anderson RR, et al. Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 1988;8:108–118.

    Article  PubMed  Google Scholar 

  21. Ruback BW, Schroenrock LD. Histological and clinical evaluation of facial resurfacing using a carbon dioxide laser with the computer pattern generator. Arch Otolaryngol Head Neck Surg 1997;123:929–934.

    Google Scholar 

  22. Bernstein LJ, Kauvar ANB, Grossman MC, et al. The shortand long-term side effects of carbon dioxide laser resurfacing. Dermatol Surg 1997;23:519–525.

    Article  CAS  PubMed  Google Scholar 

  23. Fitzpatrick RE, Smith SR, Sriprachya-anunt S. Depth of vaporization and the effect of pulse stacking with a high-energy, pulsed carbon dioxide laser. J Am Acad Dermatol 1999;40:615–622.

    Article  CAS  PubMed  Google Scholar 

  24. Walsh JT, Flotte TJ, Deutsch TF. Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage. Lasers Surg Med 1989;9:327–337.

    Article  PubMed  Google Scholar 

  25. Ross EV, Anderson RR. The erbium laser in skin resurfacing. In: Alster TS, Apfelberg DB, eds. Cosmetic laser surgery. 2nd ed. New York: Wiley; 1999:57–84.

    Google Scholar 

  26. Alster TS. Clinical and histologic evaluation of six erbium: YAG lasers for cutaneous resurfacing. Lasers Surg Med 1999;24:87–92.

    Article  CAS  PubMed  Google Scholar 

  27. Hibst R, Kaufmann R. Effects of laser parameters on pulsed Er:YAG laser ablation. Lasers Med Science 1991;6:391–397.

    Article  Google Scholar 

  28. Hohenleutner U, Hohenleutner S, Baumler W, et al. Fast and effective skin ablation with an Er:YAG laser: determination of ablation rates and thermal damage zones. Lasers Surg Med 1997;20:242–247.

    Article  CAS  PubMed  Google Scholar 

  29. Alster TS, Lupton JR. Erbium:YAG cutaneous laser resurfacing. Dermatol Clin 2001;19:453–466.

    Article  CAS  PubMed  Google Scholar 

  30. Khatri KA, Ross EV, Grevelink JM, et al. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides. Arch Dermatol 1999;135:391–397.

    Article  CAS  PubMed  Google Scholar 

  31. Goldman MP, Marchell N, Fitzpatrick RE. Laser skin resurfacing of the face with a combined CO2/Er:YAG laser. Dermatol Surg 2000;26:102–104.

    Article  CAS  PubMed  Google Scholar 

  32. Sapijaszko MJA, Zachary CB. Er:YAG laser skin resurfacing. Dermatol Clin 2002;20:87–96.

    PubMed  Google Scholar 

  33. Pozner JM, Goldberg DJ. Histologic effect of a variable pulsed Er:YAG laser. Dermatol Surg 2000;26:733–736.

    Article  CAS  PubMed  Google Scholar 

  34. Nanni CA, Alster TS. Complications of carbon dioxide laser resurfacing: an evaluation of 500 patients. Dermatol Surg 1998;24:315–320.

    Article  CAS  PubMed  Google Scholar 

  35. Tanzi EL, Alster TS. Side effects and complications of variable-pulsed erbium:yttrium-aluminum-garnet laser skin resurfacing: extended experience with 50 patients. Plast Reconstr Surg 2003;111:1524–1529.

    Article  PubMed  Google Scholar 

  36. David L, Ruiz-Esparza J. Fast healing after laser skin resurfacing: the minimal mechanical trauma technique. Dermatol Surg 1997;23:359–361.

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz-Esparza J, Gomez JMB. Long-term effects of one general pass laser resurfacing: a look at dermal tightening and skin quality. Dermatol Surg 1999;25:169–174.

    Article  CAS  PubMed  Google Scholar 

  38. Alster TS, Hirsch RJ. Single-pass CO2 laser skin resurfacing of light and dark skin: extended experience with 52 patients. J Cosmet Laser Ther 2003;5:39–42.

    Article  PubMed  Google Scholar 

  39. Tanzi EL, Alster TS. Single-pass carbon dioxide versus multiple-pass Er:YAG laser skin resurfacing: a comparison of postoperative wound healing and side-effect rates. Dermatol Surg 2003;29:80–84.

    Article  PubMed  Google Scholar 

  40. Newman JB, Lord JL, Ash K, et al. Variable pulse erbium: YAG laser skin resurfacing of perioral rhytides and sideby-side comparison with carbon dioxide laser. Lasers Surg Med 1998;24:1303–1307.

    Google Scholar 

  41. Fitzpatrick RE, Rostan EF, Marchell N. Collagen tightening induced by carbon dioxide laser versus erbium:YAG laser. Lasers Surg Med 2000;27:395–403.

    Article  CAS  PubMed  Google Scholar 

  42. Zachary CB. Modulating the Er:YAG laser. Lasers Surg Med 2002;26:223–226.

    Article  Google Scholar 

  43. Rostan EF, Fitzpatrick RE, Goldman MP. Laser resurfacing with a long pulse erbium:YAG laser compared to the 950 ms pulsed CO2 laser. Lasers Surg Med 2001;29:136–141.

    Article  CAS  PubMed  Google Scholar 

  44. Alster TS, Tanzi, EL. Laser skin resurfacing: ablative and non-ablative. In: Hanke CW, Sengelmann RD, Siegel DM, eds. Aesthetic surgical procedures. Philadelphia: Elsevier, Mosby; 2005:611–624.

    Google Scholar 

  45. Tanzi EL, Alster TS. Effect of a semiocclusive siliconebased dressing after ablative laser resurfacing of facial skin. Cosmetic Dermatol 2003;16:13–16.

    Google Scholar 

  46. Batra RS, Ort RJ, Jacob C, et al. Evaluation of a silicone occlusive dressing after laser skin resurfacing. Arch Dermatol 2001;137:1317–1321.

    CAS  PubMed  Google Scholar 

  47. Horton S, Alster TS. Preoperative and postoperative considerations for cutaneous laser resurfacing. Cutis 1999;64:399–406.

    CAS  PubMed  Google Scholar 

  48. Sriprachya-anunt S, Fitzpatrick RE, Goldman MP, et al. Infections complicating pulsed carbon dioxide laser resurfacing for photo-aged facial skin. Dermatol Surg 1997;23:527–536.

    Article  CAS  PubMed  Google Scholar 

  49. Fisher AA. Lasers and allergic contact dermatitis to topical antibiotics, with particular reference to bacitracin. Cutis 1996;58:252–254.

    CAS  PubMed  Google Scholar 

  50. Alster TS, West TB. Effect of topical vitamin C on postoperative carbon dioxide resurfacing erythema. Dermatol Surg 1998;24:331–334.

    Article  CAS  PubMed  Google Scholar 

  51. McDaniel DH, Ash K, Lord J, et al. Accelerated laser resurfacing wound healing using a triad of topical antioxidants. Dermatol Surg 1998;24:661–664.

    Article  CAS  PubMed  Google Scholar 

  52. Alster TS, Nanni CA. Pulsed dye laser treatment of hypertrophic burn scars. Plast Reconstr Surg 1998;102:2190–2195.

    Article  CAS  PubMed  Google Scholar 

  53. Alster TS, Tanzi EL. Complications in laser and light surgery. In: Goldberg DB, ed. Laser skin surgery. Vol. 2. New York: Elsevier; 2005:103–118.

    Google Scholar 

  54. Walia S, Alster TS. Cutaneous CO2 laser resurfacing infection rate with and without prophylactic antibiotics. Dermatol Surg 1999;25:857–861.

    Article  CAS  PubMed  Google Scholar 

  55. West TB, Alster TS. Effect of pretreatment on the incidence of hyperpigmentation following cutaneous CO2 laser resurfacing. Dermatol Surg 1999;25:15–17.

    Article  CAS  PubMed  Google Scholar 

  56. Friedman PM, Geronemus RG. Use of the 308-nm excimer laser for postresurfacing leukoderma. Arch Dermatol 2001;137:824–825.

    CAS  PubMed  Google Scholar 

  57. Grimes PE, Bhawan J, Kim J, et al. Laser resurfacing-induced hypopigmentation: histologic alteration and repigmentation with topical photochemotherapy. Dermatol Surg 2001;27:515–520.

    Article  CAS  PubMed  Google Scholar 

  58. Alster TS. Improvement of erythematous and hypertrophic scars by the 585 nm pulsed dye laser. Ann Plast Surg 1994;32:186–190.

    Article  CAS  PubMed  Google Scholar 

  59. Alster TS, Williams CM. Treatment of keloid sternotomy scars with 585 nm flashlamp pumped pulsed dye laser. Lancet 1995;345:1198–1200.

    Article  CAS  PubMed  Google Scholar 

  60. Alster TS. Laser scar revision: comparison study of 585-nm pulsed dye laser with and without intralesional corticosteroids. Dermatol Surg 2003;29:25–29.

    Article  PubMed  Google Scholar 

  61. Alster TS, Tanzi EL. Hypertrophic scars and keloids: a review of etiology and management. Am J Clin Dermatol 2003;4:235–243.

    Article  PubMed  Google Scholar 

  62. Hardaway CA, Ross EV. Nonablative laser skin remodeling. Dermatol Clin 2002;20:97–111.

    PubMed  Google Scholar 

  63. Zelickson B, Kist D. Effect of pulse dye laser and intense pulsed light source on the dermal extracellular matrix remodeling. Lasers Surg Med 2000;12:68.

    Google Scholar 

  64. Bjerring P, Clement M, Heickendorff L, et al. Selective non-ablative wrinkle reduction by laser. J Cutan Laser Ther 2000;2:9–15.

    CAS  PubMed  Google Scholar 

  65. Goldberg DJ, Cutler KB. Nonablative treatment of rhytids with intense pulsed light. Lasers Surg Med 2000;26:196–200.

    Article  CAS  PubMed  Google Scholar 

  66. Bitter PH. Noninvasive rejuvenation of photodamaged skin using serial, full-face intense pulsed light treatments. Dermatol Surg 2000;26:835–843.

    Article  CAS  PubMed  Google Scholar 

  67. Weiss RA, Weiss MA, Beasley KL. Rejuvenation of photoaged skin: 5 years results with intense pulsed light of the face, neck, and chest. Dermatol Surg 2002;28:1115–1119.

    Article  PubMed  Google Scholar 

  68. Fodor L, Peled IJ, Rissin Y, et al. Using intense pulsed light for cosmetic purposes: our experience. Plast Reconstr Surg 2004;113:1789–1795.

    Article  PubMed  Google Scholar 

  69. Goldberg DJ, Whitworth J. Laser skin resurfacing with the Q-switched Nd:YAG laser. Dermatol Surg 1997;23:903–906; discussion, 906–907.

    Article  CAS  PubMed  Google Scholar 

  70. Goldberg DJ, Metzler C. Skin resurfacing utilizing a low-fluence Nd:YAG laser. J Cutan Laser Ther 1999;1:23–27.

    CAS  PubMed  Google Scholar 

  71. Lee MW. Combination visible and infrared lasers for skin rejuvenation. Semin Cutan Med Surg 2002;21:288–300.

    Article  PubMed  Google Scholar 

  72. Menaker GM, Wrone DA, Williams RM, et al. Treatment of facial rhytids with a nonablative laser: a clinical and histologic study. Dermatol Surg 1999;25:440–444.

    Article  CAS  PubMed  Google Scholar 

  73. Kelly KM, Nelson S, Lask GP, et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol 1999;135:691–694.

    Article  CAS  PubMed  Google Scholar 

  74. Goldberg DJ. Nonablative subsurface remodeling: clinical and histologic evaluation of a 1320 nm Nd:YAG laser. J Cutan Laser Ther 1999;1:153–157.

    CAS  PubMed  Google Scholar 

  75. Trelles MA, Allones I, Luna R. Facial rejuvenation with a nonablative 1320 nm Nd:YAG laser. A preliminary clinical and histologic evaluation. Dermatol Surg 2001;27:111–116.

    Article  CAS  PubMed  Google Scholar 

  76. Fatemi A, Weiss MA, Weiss RA. Short-term histologic effects of nonablative resurfacing: results with a dynamically cooled millisecond-domain 1320 nm Nd:YAG laser. Dermatol Surg 2002;28:172–176.

    Article  PubMed  Google Scholar 

  77. Goldberg DJ, Rogachefsky AS, Silapunt S. Nonablative laser treatment of facial rhytides: a comparison of 1450 nm diode laser treatment with dynamic cooling as opposed to treatment with dynamic cooling alone. Lasers Surg Med 2002;30:79–81.

    Article  PubMed  Google Scholar 

  78. Hardaway CA, Ross EV, Paithankar DY. Non-ablative cutaneous remodeling with a 1.45 micron mid-infrared diode laser: phase II. J Cosmet Laser Ther 2002;4:9–14.

    Article  PubMed  Google Scholar 

  79. Tanzi EL, Williams CM, Alster TS. Treatment of facial rhytides with a nonablative 1450-nm diode laser: a controlled clinical and histologic study. Dermatol Surg 2003;29:124–129.

    Article  PubMed  Google Scholar 

  80. Tanzi EL, Alster TS. Comparson of a 1450 nm diode laser and a 1320 nm Nd:YAG laser in the treatment of atrophic facial scars: a prospective clinical and histologic study. Dermatol Surg 2004;30:152–157.

    Article  PubMed  Google Scholar 

  81. Itoh Y, Ninomiya Y, Tajima S, et al. Photodynamic therapy for acne vulgaris with topical aminolevulinic acid. Arch Dermatol 2000;136:1093–1095.

    Article  CAS  PubMed  Google Scholar 

  82. Hongcharu W, Taylor CR, Chang Y, Aghassi D, Suthamjariya K, Anderson RR. Topical ALA-photodynamic therapy for the treatment of acne vulgaris. J Invest Dermatol 2000;115:183–192.

    Article  CAS  PubMed  Google Scholar 

  83. Ibbotson S. Topical 5-aminolevulinic acid photodynamic therapy for the treatment of skin conditions other than non-melanoma skin cancer. Br J Dermatol 2002;146:178–188.

    Article  CAS  PubMed  Google Scholar 

  84. Svanberg K, Andersson T, Killander D, et al. Photodynamic therapy of non-melanoma malignant tumors of the skin using topical 5-aminolevulinic acid sensitization and laser irradiation. Br J Dermatol 1994;130:743–751.

    Article  CAS  PubMed  Google Scholar 

  85. Robinson D, Collins P, Stringer M, et al. Improved response of plaque psoriasis after multiple treatments with topical 5-aminolevulinic acid photodynamic therapy. Acta Dermatol Venereol 1999;79:451–455.

    Article  CAS  Google Scholar 

  86. Stendar I-M, Na R, Fogh H, et al. Photodynamic therapy with 5-aminolevulinic acid or placebo for recalcitrant foot and hand warts: randomised double-blind trial. Lancet 2000;355:963–966.

    Article  Google Scholar 

  87. Leman J, Dick D, Morton C. Topical 5-ALA photodynamic therapy for the treatment of cutaneous T-cell lymphoma. Clin Exp Dermatol 2002;27:516–518.

    Article  CAS  PubMed  Google Scholar 

  88. Fink-Puches R, Soyer HP, Hofer A, et al. Long-term follow-up and histological changes of superficial nonmelanoma skin cancers treated with topical δ-aminolevulinic acid photodynamic therapy. Arch Dermatol 1998;134:821–826.

    Article  CAS  PubMed  Google Scholar 

  89. Jeffes EW, McCullough JL, Weinstein GD, et al. Photodynamic therapy of actinic keratoses with topical aminolevulinic acid hydrochloride and fluorescent blue light. J Am Acad Dermatol 2001;45:96–104.

    Article  CAS  PubMed  Google Scholar 

  90. Alexiades-Armenakas MR, Geronemus RG. Laser-assisted photodynamic therapy of actinic keratoses. Arch Dermatol 2003;139:1313–1320.

    Article  PubMed  Google Scholar 

  91. Haller JC, Cairnduff F, Slack G, et al. Routine double treatments of superficial basal cell carcinomas using aminolevulinic acid-based photodynamic therapy. Br J Dermatol 2000;143:1270–1275.

    Article  CAS  PubMed  Google Scholar 

  92. Alster TS, Tanzi EL. Photodynamic therapy with topical aminolevulinic acid and pulsed dye laser irradiation for sebaceous hyperplasia. J Drugs Dermatol 2003;2:501–504.

    PubMed  Google Scholar 

  93. Avram DK, Goldman MP. Effectiveness and safety of ALA-IPL in treating actinic keratoses and photodamage. J Drugs Dermatol 2004;3(Suppl 1):S36–S39.

    PubMed  Google Scholar 

  94. Ruiz-Rodriguez R, Sanz-Sanchez T, Cordoba S. Photodynamic photorejuvenation. Dermatol Surg 2002;28:742–744.

    Article  CAS  PubMed  Google Scholar 

  95. Gold MH, Goldman MP. 5-Aminolevulinic acid photodynamic therapy: where we have been and where we are going. Dermatol Surg 2004;30:1077–1084.

    Article  PubMed  Google Scholar 

  96. Touma D, Yaar M, Whitehead S, et al. A trial of short incubation, broad-area photodynamic therapy for facial actinic keratoses and diffuse photodamage. Arch Dermatol 2004;140:33–40.

    Article  CAS  PubMed  Google Scholar 

  97. Alster TS, Tanzi EL, Welsh EC. Photorejuvenation of facial skin with topical 20% 5-aminolevulinic acid and intense pulsed light treatment: a split-face comparison study. J Drugs Dermatol 2005;4:35–38.

    PubMed  Google Scholar 

  98. Alam M, Dover JS. Treatment of photoaging with topical aminolevulinic acid and light. Skin Ther Lett 2005;9:7–9.

    Google Scholar 

  99. Gold MH, Bradshaw VL, Boring MM, et al. The use of a novel intense pulsed light and heat source and ALA PDT in the treatment of moderate to severe inflammatory acne vulgaris. J Drugs Dermatol 2004;3:S15–S19.

    PubMed  Google Scholar 

  100. Taub AF. Photodynamic therapy for the treatment of acne: a pilot study. J Drugs Dermatol 2004;3:S10–S14.

    PubMed  Google Scholar 

  101. Alster TS, Tanzi EL. Improvement of neck and cheek laxity with a non-ablative radiofrequency device: a lifting experience. Dermatol Surg 2004;30:503–507.

    Article  PubMed  Google Scholar 

  102. Hsu TS, Kaminer MS. The use of nonablative radiofrequency technology to tighten the lower face and neck. Semin Cutan Med Surg 2003;22:115–123.

    Article  PubMed  Google Scholar 

  103. Fitzpatrick R, Geronemus R, Goldberg D, et al. Multicenter study of noninvasive radiofrequency for periorbital tissue tightening. Lasers Surg Med 2003;33:23–242.

    Article  Google Scholar 

  104. Ruiz-Esparza J, Gomez JB. The medical face lift: a noninvasive, nonsurgical approach to tissue tightening in facial skin using nonablative radiofrequency. Dermatol Surg 2003;29:325–332.

    Article  PubMed  Google Scholar 

  105. Kushikata N, Negishi K, Tezuka Y, et al. Non-ablative skin tightening with radiofrequency in Asian skin. Lasers Surg Med 2005;36:92–97.

    Article  PubMed  Google Scholar 

  106. Nahm WK, Su TT, Rotunda AM, et al. Objective changes in brow position, superior palpebral crease, peak angle of the eyebrow, and jowl surface area after volumetric radiofrequency treatments to half of the face. Dermatol Surg 2004;30:922–928.

    Article  PubMed  Google Scholar 

  107. Fritz M, Counters JT, Zelickson BDE. Radiofrequency treatment for middle and lower face laxity. Arch Facial Plast Surg 2004;6:370–373.

    Article  PubMed  Google Scholar 

  108. Doshi SN, Alster TS. Combination radiofrequency and diode laser for treatment of facial rhytides and skin laxity. J Cosmet Laser Ther 2005;7:11–15.

    Article  PubMed  Google Scholar 

  109. Sadick NS, Alexiades-Armenakas M, Bitter P Jr, et al. Enhanced full-face skin rejuvenation using synchronous intense pulsed optical and conducted bipolar radiofrequency energy (ELOS): introducing selective radiophotothermolysis. J Drugs Dermatol 2005;4:181–186.

    PubMed  Google Scholar 

  110. Manstein D, Herron S, Sink RK, et al. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med 2004;34:426–438.

    Article  PubMed  Google Scholar 

  111. Wanner M, Tanzi EL, Alster TS. Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1,550-nm erbium-doped fiber laser. Dermatol Surg 2007;33(1):23–28.

    Article  CAS  PubMed  Google Scholar 

  112. Alster TS, Tanzi EL, Lazarus M. The use of fractional laser photothermolysis for the treatment of atrophic scars. Dermatol Surg 2007;33(3):295–299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tanzi, E.L., Alster, T.S. (2008). Complications of Ablative and Nonablative Lasers and Light Sources. In: Gloster, H.M. (eds) Complications in Cutaneous Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73152-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73152-0_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-73151-3

  • Online ISBN: 978-0-387-73152-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics