Skip to main content

Part of the book series: BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING ((BIOMEDICAL))

Abstract

Carrying on many different biological functions, proteins are all composed of one or more polypeptide chains, each containing from several to hundreds or even thousands of the 20 amino acids. During the 1950s at the dawn of modern biochemistry, an essential question for biochemists was to understand the structure and function of these polypeptide chains. The sequences of protein, also referred to as their primary structures, determine the different chemical properties for different proteins, and thus continue to captivate much of the attention of biochemists. As an early step in characterizing protein chemistry, British biochemist Frederick Sanger designed an experimental method to identify the sequence of insulin (Sanger et al., 1955). He became the first person to obtain the primary structure of a protein and in 1958 won his first Nobel Price in Chemistry. This important progress in sequencing did not answer the question of whether a single (individual) protein has a distinctive shape in three dimensions (3D), and if so, what factors determine its 3D architecture. However, during the period when Sanger was studying the primary structure of proteins, American biochemist Christian Anfinsen observed that the active polypeptide chain of a model protein, bovine pancreatic ribonuclease (RNase), could fold spontaneously into a unique 3D structure, which was later called native conformation of the protein (Anfinsen et al., 1954). Anfinsen also studied the refolding of RNase enzyme and observed that an enzyme unfolded under extreme chemical environment could refold spontaneously back into its native conformation upon changing the environment back to natural conditions (Anfinsen et al., 1961). By 1962, Anfinsen had developed his theory of protein folding (which was summarized in his 1972 Nobel acceptance speech): “The native conformation is determined by the totality of interatomic interactions and hence, by the amino acid sequence, in a given environment.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts, I. L., Todorov, N. P. and Dean, P. M. 2005. Receptor flexibility in de novo ligand design and docking. J. Med. Chem. 48:6585–6596.

    Google Scholar 

  • Alexandrov, N. N., Nussinov, R., and Zimmer, R. M. 1996. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials. Pac. Symp. Biocomput. pp. 53–72.

    Google Scholar 

  • Alexandrov, N., and Shindyalov, I. 2003. PDP: Protein domain parser. Bioinformatics 19:429–430.

    Google Scholar 

  • Aloy, P., Bottcher, B., Ceulemans, H., Leutwein, C., Mellwig, C., Fischer, S., Gavin, A.-C., Bork, P., Superti-Furga, G., Serrano, L., and Russell, R. B. 2004. Structure-based assembly of protein complexes in yeast. Science 303:2026–2029.

    ADS  Google Scholar 

  • Anfinsen, C. B. 1973. Principles that govern the folding of protein chains. Science 181:223–230.

    ADS  Google Scholar 

  • Anfinsen, C. B., Haber, E., Sela, M., and White, F. H. J. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci., USA 47:1309–1314.

    ADS  Google Scholar 

  • Anfinsen, C. B., Redfield, R. R., Choate, W. I., Page, J., and Carroll, W. R. 1954. Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J. Biol. Chem. 207:201–210.

    Google Scholar 

  • Baaden, M., Meier, C., and Sansom, M. S. P. 2003. A molecular dynamics investigation of mono and dimeric states of the outer membrane enzyme OMPLA. J. Mol. Biol. 331:177–189.

    Google Scholar 

  • Baker, D., and Sali, A. 2001. Protein structure prediction and structural genomics. Science 294:93–96.

    ADS  Google Scholar 

  • Baker, T. S., and Johnson, J. E. 1996. Low resolution meets high: Towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6:585–594.

    Google Scholar 

  • Berven, F. S., Flikka, K., Jensen, H. B., and Eidhammer, I. 2004. BOMP: A program to predict integral β -barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. 32(Web Server Issue):W394–W399.

    Google Scholar 

  • Bond, P. J., Faraldo-Gomez, J. D., and Sansom, M. S. P. 2002. OmpA: A pore or not a pore? Simulation and modeling studies. Biophys. J. 83:763–775.

    ADS  Google Scholar 

  • Bowie, J. U., Luthy, R., and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170.

    ADS  Google Scholar 

  • Bracken, C., Iakoucheva, L. M., Romero, P. R., and Dunker, A. K. 2004. Combining prediction, computation and experiment for the characterization of protein disorder. Curr. Opin. Struct. Biol. 14:570–576.

    Google Scholar 

  • Brenner, S. E. 2001. A tour of structural genomics. Nature Rev. Genet. 2:801–809.

    Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4:187–217.

    Google Scholar 

  • Browne, W. J., North, A. C., Phillips, D. C., Brew, K., Vanaman, T. C., and Hill, R. L. 1969. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. J. Mol. Biol. 42:65–86.

    Google Scholar 

  • Bryant, S. H., and Lawrence, C. E. 1993. An empirical energy function for threading protein sequence through the folding motif. Proteins 16:92–112.

    Google Scholar 

  • Bujnicki, J. M., Elofsson, A., Fischer, D., and Rychlewski, L. 2001. Structure prediction meta server. Bioinformatics 17:750–751.

    Google Scholar 

  • Busetta, B., and Barrans, Y. 1984. The prediction of protein domains. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 790:117–124.

    Google Scholar 

  • Bystroff, C., and Baker, D. 1998. Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281:565–577.

    Google Scholar 

  • Candler, A., Featherstone, M., Ali, R., Maloney, L., Watts, A., and Fischer, W. B. 2005. Computational analysis of mutations in the transmembrane region of Vpu from HIV-1. Biochim. Biophys. Acta Biomembranes 1716:1–10.

    Google Scholar 

  • Canutescu, A. A., Shelenkov, A. A., and Dunbrack, R. L., Jr. 2003. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 12:2001–2014.

    Google Scholar 

  • Casari, G., and Sippl, M. J. 1992. Structure-derived hydrophobic potential: Hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds. J. Mol. Biol. 224:725–732.

    Google Scholar 

  • Ceulemans, H., and Russell, R. B. 2004. Fast fitting of atomic structures to low-resolution electron density maps by surface overlap maximization. J. Mol. Biol. 338:783–793.

    Google Scholar 

  • Chen, C. P., and Rost, B. 2002. State-of-the-art in membrane protein prediction. Appl. Bioinformatics 1:21–35.

    Google Scholar 

  • Chen, R., Li, L., and Weng, Z. 2003. ZDOCK: An initial-stage protein-docking algorithm. Proteins 52:80–87.

    Google Scholar 

  • Chiu, W., Baker, M. L., Jiang, W., Dougherty, M., and Schmid, M. F. 2005. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13:363–372.

    Google Scholar 

  • Chiu, W., Baker, M. L., Jiang, W., and Zhou, Z. H. 2002. Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr. Opin. Struct. Biol. 12:263–269.

    Google Scholar 

  • Clore, G. M. 2000. Accurate and rapid docking of protein–protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization. Proc. Natl. Acad. Sci. USA 97:9021–9025.

    ADS  Google Scholar 

  • Contreras-Moreira, B., and Bates, P. A. 2002. Domain Fishing: A first step in protein comparative modelling. Bioinformatics 18:1141–1142.

    Google Scholar 

  • Cserzo, M., Wallin, E., Simon, I., von Heijne, G., and Elofsson, A. 1997. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Eng. 10:673–676.

    Google Scholar 

  • Daley, D. O., Rapp, M., Granseth, E., Melen, K., Drew, D., and von Heijne, G. 2005. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323.

    ADS  Google Scholar 

  • Daniel, F. 2003. 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-predictor. Proteins Struct. Funct. Genet. 51:434–441.

    Google Scholar 

  • Deane, C. M., and Blundell, T. L. 2001. CODA: A combined algorithm for predicting the structurally variable regions of protein models. Protein Sci. 10:599–612.

    Google Scholar 

  • Deber, C. M., Wang, C., Liu, L.-P., Prior, A. S., Agrawal, S., Muskat, B. L., and Cuticchia, A. J. 2001. TM Finder: A prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales. Protein Sci. 10:212–219.

    Google Scholar 

  • Desmet, J., Maeyer, M. D., Hazes, B., and Lasters, I. 1992. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542.

    ADS  Google Scholar 

  • Dill, K. A., Fiebig, K. M., and Chan, H. S. 1993. Cooperativity in protein-folding kinetics. Proc. Natl. Acad. Sci. USA 90:1942–1946.

    ADS  Google Scholar 

  • Dominguez, C., Boelens, R., and Bonvin, A. M. J. J. 2003. HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125:1731–1737.

    Google Scholar 

  • Donate, L. E., Rufino, S. D., Canard, L. H., and Blundell, T. L. 1996. Conformational analysis and clustering of short and medium size loops connecting regular secondary structures: A database for modeling and prediction. Protein Sci. 5:2600–2616.

    Google Scholar 

  • Duan, Y., and Kollman, P. A. 1998. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282:740–744.

    ADS  Google Scholar 

  • Dumontier, M., Yao, R., Feldman, H. J., and Hogue, C. W. V. 2005. Armadillo: Domain boundary prediction by amino acid composition. J. Mol. Biol. 350:1061–1073.

    Google Scholar 

  • Dunbrack, J. R. L., and Karplus, M. 1993. Backbone-dependent rotamer library for proteins application to side-chain prediction. J. Mol. Biol. 230:543–574.

    Google Scholar 

  • Edgar, R. C., and Sjolander, K. 2004. COACH: Profile–profile alignment of protein families using hidden Markov models. Bioinformatics 20:1309–1318.

    Google Scholar 

  • Fahmy, A., and Wagner, G. 2002. TreeDock: A tool for protein docking based on minimizing van der Waals energies. J. Am. Chem. Soc. 124:1241–1250.

    Google Scholar 

  • Fanelli, F., and DeBenedetti, P. G. 2005. Computational modeling approaches to structure–function analysis of G protein-coupled receptors. Chem. Rev. 105:3297–3351.

    Google Scholar 

  • Fischer, D., Lin, S. L., Wolfson, H. L., and Nussinov, R. 1995. A geometry-based suite of molecular docking processes. J. Mol. Biol. 248:459–477.

    Google Scholar 

  • Friedberg, I., Jaroszewski, L., Ye, Y., and Godzik, A. 2004. The interplay of fold recognition and experimental structure determination in structural genomics. Curr. Opin. Struct. Biol. 14:307–312.

    Google Scholar 

  • Gabb, H. A., Jackson, R. M., and Sternberg, M. J. E. 1997. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272:106–120.

    Google Scholar 

  • Galzitskaya, O. V., and Melnik, B. S. 2003. Prediction of protein domain boundaries from sequence alone. Protein Sci. 12:696–701.

    Google Scholar 

  • Gardiner, E. J., Willett, P., and Artymiuk, P. J. (2001). Protein docking using a genetic algorithm. Proteins Struct. Funct. Genet. 44:44–56.

    Google Scholar 

  • Gavin, A.-C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A.-M., Cruciat, C.-M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.-A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. and Superti-Furga, G. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.

    ADS  Google Scholar 

  • George, R. A., and Heringa, J. 2002a. Protein domain identification and improved sequence similarity searching using PSI-BLAST. Proteins 48:672–681.

    Google Scholar 

  • George, R. A., and Heringa, J. 2002b. SnapDRAGON: A method to delineate protein structural domains from sequence data. J. Mol. Biol. 316:839–851.

    Google Scholar 

  • Gibson, K. D., and Scheraga, H. A. 1967a. Minimization of polypeptide energy, I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proc. Natl. Acad. Sci. USA 58:420–427.

    ADS  Google Scholar 

  • Gibson, K. D., and Scheraga, H. A. 1967b. Minimization of polypeptide energy. II. Preliminary structures of oxytocin, vasopressin, and an octapeptide from ribonuclease. Proc. Natl. Acad. Sci. USA 58:1317–1323.

    ADS  Google Scholar 

  • Ginalski, K., Elofsson, A., Fischer, D., and Rychlewski, L. 2003. 3D-Jury: A simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018.

    Google Scholar 

  • Giorgetti, A., and Carloni, P. 2003. Molecular modeling of ion channels: Structural predictions. Curr. Opin. Chem. Biol. 7:150–156.

    Google Scholar 

  • Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., and Baker, D. 2003. Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331:281–299.

    Google Scholar 

  • Greer, J. 1981. Comparative model-building of the mammalian serine proteases. J. Mol. Biol. 153:1027–1042.

    Google Scholar 

  • Greer, J., and Bush, B. L. 1978. Macromolecular shape and surface maps by solvent exclusion. Proc. Natl. Acad. Sci. USA 75:303–307.

    ADS  Google Scholar 

  • Guan, X., and Du, L. 1998. Domain identification by clustering sequence alignments. Bioinformatics 14:783–788.

    Google Scholar 

  • Guo, J.-T., Ellrott, K., Chung, W. J., Xu, D., Passovets, S., and Xu, Y. 2004. PROSPECT-PSPP: An automatic computational pipeline for protein structure prediction. Nucleic Acids Res. 32(Suppl. 2):W522–525.

    Google Scholar 

  • Guo, J. T., Xu, D., Kim, D., and Xu, Y. 2003. Improving the performance of DomainParser for structural domain partition using neural network. Nucleic Acids Res. 31:944–952.

    Google Scholar 

  • Heijne, V. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021–3027.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929.

    Google Scholar 

  • Hirokawa, T., Boon-Chieng, S., and Mitaku, S. 1998. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379.

    Google Scholar 

  • Holm, L., and Sander, C. 1994. Parser for protein folding units. Proteins 19:256–268.

    Google Scholar 

  • Huo, S., Massova, I., and Kollman, P. A. 2002. Computational alanine scanning of the 1:1 human growth hormone—receptor complex. J. Comp. Chem. 23:15–27.

    Google Scholar 

  • Inbar, Y., Benyamini, H., Nussinov, R., and Wolfson, H. J. 2003. Protein structure prediction via combinatorial assembly of sub-structural units. Bioinformatics 19(Suppl. 1):i158–i168.

    Google Scholar 

  • Jiang, W., Baker, M. L., Ludtke, S. J., and Chiu, W. 2001. Bridging the information gap: Computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308:1033–1044.

    Google Scholar 

  • Jones, D. T. 1999. GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287:797–815.

    Google Scholar 

  • Jones, D. T., Bryson, K., Coleman, A., McGuffin, L. J., Sadowski, M. I., Sodhi, J. S., and Ward, J. J. 2005. Prediction of novel and analogous folds using fragment assembly and fold recognition. Proteins 61(Suppl. 7):143–151.

    Google Scholar 

  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267:727–748.

    Google Scholar 

  • Karchin, R., Diekhans, M., Kelly, L., Thomas, D. J., Pieper, U., Eswar, N., Haussler, D., and Sali, A. 2005. LS-SNP: Large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21:2814–2820.

    Google Scholar 

  • Karplus, K., Barrett, C., and Hughey, R. 1998. Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856.

    Google Scholar 

  • Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. 1992. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89:2195–2199.

    ADS  Google Scholar 

  • Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. 2000. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299:501–522.

    Google Scholar 

  • Kihara, D., Lu, H., Kolinski, A., and Skolnick, J. 2001. TOUCHSTONE: An ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc. Natl. Acad. Sci. USA 98:10125–10130.

    ADS  Google Scholar 

  • Kim, D. E., Chivian, D., and Baker, D. 2004. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 32(Suppl. 2):W526–531.

    Google Scholar 

  • Klein, P., Kanehisa, M., and DeLisi, C. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta Prot. Struct. Mol. Enzymol. 815:468–476.

    Google Scholar 

  • Koehl, P., and Delarue, M. 1995. A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat. Struct. Biol. 2:163–170.

    Google Scholar 

  • Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., Przybylski, D., Madhusudhan, M. S., Eswar, N., Grana, O., Pazos, F., Valencia, A., Sali, A., and Rost, B. 2003. EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31:3311–3315.

    Google Scholar 

  • Kolinski, A., and Skolnick, J. 1994a. Monte Carlo simulation of protein folding. II. Application to protein A, ROP, and crambin. Proteins 18:353–366.

    Google Scholar 

  • Kolinski, A., and Skolnick, J. 1994b. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins 18:338–352.

    Google Scholar 

  • Kolinski, A., and Skolnick, J. 1998. Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model. Proteins 32:475–494.

    Google Scholar 

  • Kolinski, A., and Skolnick, J. 2004. Reduced models of proteins and their applications. Polymer 45:511–524.

    Google Scholar 

  • Kosinski, J., Cymerman, I. A., Feder, M., Kurowski, M. A., Sasin, J. M., and Bujnicki, J. M. 2003. A “FRankenstein's monster” approach to comparative modeling: Merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 53(S6):369–379.

    Google Scholar 

  • Kriventseva, E. V., Koch, I., Apweiler, R., Vingron, M., Bork, P., Gelfand, M. S., and Sunyaev, S. 2003. Increase of functional diversity by alternative splicing. Trends Genet. 19:124–128.

    Google Scholar 

  • Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. 1994. Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 235:1501–1531.

    Google Scholar 

  • Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305:567–580.

    Google Scholar 

  • Kurowski, M. A., and Bujnicki, J. M. 2003. GeneSilico protein structure prediction meta-server. Nucleic Acids Res. 31:3305–3307.

    Google Scholar 

  • Kyte, J., and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Google Scholar 

  • Lau, K. F., and Dill, K. A. 1989. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22:3986–3997.

    ADS  Google Scholar 

  • Lee, C. 1994. Predicting protein mutant energetics by self-consistent ensemble optimization. J. Mol. Biol. 236:918–939.

    Google Scholar 

  • Lee, C. 1995. Testing homology modeling on mutant proteins: Predicting structural and thermodynamic effects in the Ala98→Val mutants of T4 lysozyme. Fold Des. 1:1–12.

    Google Scholar 

  • Lee, J., Kim, S.-Y., and Lee, J. 2005. Protein structure prediction based on fragment assembly and parameter optimization. Biophys. Chem. 115:209–214.

    Google Scholar 

  • Levinthal, C. 1968. Are there pathways for protein folding? J. Chem. Phys. 65:44–45.

    Google Scholar 

  • Levitt, M., and Lifson, S. 1969. Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 46:269–279.

    Google Scholar 

  • Levitt, M., and Warshel, A. 1975. Computer simulation of protein folding. Nature 253:694–698.

    ADS  Google Scholar 

  • Liwo, A., Lee, J., Ripoll, D. R., Pillardy, J., and Scheraga, H. A. 1999. Protein structure prediction by global optimization of a potential energy function. Proc. Natl. Acad. Sci. USA 96:5482–5485.

    ADS  Google Scholar 

  • Lundstrom, J., Rychlewski, L., Bujnicki, J., and Elofsson, A. 2001. Pcons: A neural-network-based consensus predictor that improves fold recognition. Protein Sci. 10:2354–2362.

    Google Scholar 

  • Luthy, R., Bowie, J. U., and Eisenberg, D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356:83–85.

    ADS  Google Scholar 

  • Madej, T., Gibrati, J.F., and S.H. Bryant 1995 ‘Threading a database of protein cores.’ Proteins 32:289–306.

    Google Scholar 

  • Marsden, R. L., McGuffin, L. J., and Jones, D. T. 2002. Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci. 11:2814–2824.

    Google Scholar 

  • Marti-Renom, M. A., Madhusudhan, M. S., and Sali, A. 2004. Alignment of protein sequences by their profiles. Protein Sci. 13:1071–1087.

    Google Scholar 

  • Melen, K., Krogh, A., and von Heijne, G. 2003. Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327:735–744.

    Google Scholar 

  • Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., and Weng, Z. 2005. Protein—protein docking benchmark 2.0: An update. Proteins 60:214–216.

    Google Scholar 

  • Misura, K. M. S., and Baker, D. 2005. Progress and challenges in high-resolution refinement of protein structure models. Proteins 59:15–29.

    Google Scholar 

  • Moult, J. 2005. A decade of CASP: Progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–289.

    Google Scholar 

  • Moult, J., Fidelis, K., Tramontano, A., Rost, B., and Hubbard, T. 2005. Critical assessment of methods of protein structure prediction (CASP)—Round VI. Proteins 61(S7):3–7.

    Google Scholar 

  • Moult, J., Hubbard, T., Fidelis, K., and Pedersen, J. T. 1999. Critical assessment of methods of protein structure prediction (CASP): Round III. Proteins(Suppl. 3):2–6.

    Google Scholar 

  • Moult, J., and James, M. N. G. 1986. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins 1:146–163.

    Google Scholar 

  • Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247:536–540.

    Google Scholar 

  • Natt, N. K., Kaur, H., and Raghava, G. P. 2004. Prediction of transmembrane regions of β-barrel proteins using ANN- and SVM-based methods. Proteins 56:11–18.

    Google Scholar 

  • Neuwald, A. F., Liu, J. S., and Lawrence, C. E. 1995. Gibbs motif sampling: Detection of bacterial outer membrane protein repeats. Protein Sci. 4:1618–1632.

    Google Scholar 

  • Oldziej, S., Czaplewski, C., Liwo, A., Chinchio, M., Nanias, M., Vila, J. A., Khalili, M., Arnautova, Y. A., Jagielska, A., Makowski, M., Schafroth, H. D., Kazmierkiewicz, R., Ripoll, D. R., Pillardy, J., Saunders, J. A., Kang, Y. K., Gibson, K. D., and Scheraga, H. A. 2005. Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests. Proc. Natl. Acad. Sci. USA 102:7547–7552.

    ADS  Google Scholar 

  • Oliva, B., Bates, P. A., Querol, E., Aviles, F. X., and Sternberg, M. J. 1997. An automated classification of the structure of protein loops. J. Mol. Biol. 266:814–830.

    Google Scholar 

  • Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B., and Thornton, J. M. 1997. CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1108.

    Google Scholar 

  • Patthy, L. 1999. Protein Evolution. Malden, MA, Blackwell Science.

    Google Scholar 

  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. R., Cheatham, T. W., DeBolt, S., Ferguson, D., Seibel, G., and Kollman, P. 1995. AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comput. Phys. Commun. 91:1–41.

    MATH  ADS  Google Scholar 

  • Pedersen, J., and Moult, J. 1995. Ab initio structure prediction for small polypeptides and protein fragments using genetic algorithms. Proteins 23:454–460.

    Google Scholar 

  • Peitsch, M. C. 1996. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24:274–279.

    Google Scholar 

  • Peitsch, M. C., and Jongeneel, V. 1993. A 3-dimensional model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int. Immunol. 5:233–238.

    Google Scholar 

  • Petrey, D., and Honig, B. 2005. Protein structure prediction: Inroads to biology. Mol. Cell 20:811–819.

    Google Scholar 

  • Petrey, D., Xiang, X., Tang, C. L., Xie, L., Gimpelev, M., Mitors, T., Soto, C. S., Goldsmith-Fischman, S., Kernytsky, A., Schlessinger, A., Koh, I. Y. Y., Alexov, E., and Honig, B. 2003. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins Struct. Funct. Genet. 53:430–435.

    Google Scholar 

  • Ponder, J. W., and Richards, F. M. 1987. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193:775–791.

    Google Scholar 

  • Qian, B., Ortiz, A. R., and Baker, D. 2004. Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc. Natl. Acad. Sci. USA 101(43):15346–15351.

    ADS  Google Scholar 

  • Rigden, D. J. 2002. Use of covariance analysis for the prediction of structural domain boundaries from multiple protein sequence alignments. Protein Eng. 15:65–77.

    Google Scholar 

  • Rohl, C. A., Strauss, C., Chivian, D., and Baker, D. 2004. Modeling structurally variable regions in homologous proteins with Rosetta. Proteins 55:656–677.

    Google Scholar 

  • Rose, G. D. 1978. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature 272:586–590.

    ADS  Google Scholar 

  • Roseman, A. M. 2000. Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Crystallogr. Sect. D Biol. Crystallogr. 56 (Pt 10):1332–1340.

    Google Scholar 

  • Rossman, M. G., and Liljas, A. 1974. Recognition of structural domains in globular proteins. J. Mol. Biol. 85:177–181.

    Google Scholar 

  • Rost, B., Casadio, R., Fariselli, P., and Sander, C. 1995. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4:521–533.

    Google Scholar 

  • Rufino, S. D., Donate, L. E., Canard, L. H. J., and Blundell, T. L. 1997. Predicting the conformational class of short and medium size loops connecting regular secondary structures: Application to comparative modelling. J. Mol. Biol. 267:352–367.

    Google Scholar 

  • Rychlewski, L., Jaroszewski, L., Li, W., and Godzik, A. 2000. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9:232–241.

    Google Scholar 

  • Sadreyev, R. I., Baker, D., and Grishin, N. V. 2003. Profile—profile comparisons by COMPASS predict intricate homologies between protein families. Protein Sci. 12:2262–2272.

    Google Scholar 

  • Sali, A., and Blundell, T. L. 1993. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815.

    Google Scholar 

  • Samudrala, R., Xia, Y., Huang, E., and Levitt, M. 1999. Ab initio protein structure prediction using a combined hierarchical approach. Proteins 37(S3):194–198.

    Google Scholar 

  • Sanchez, R., Pieper, U., Mirkovi, N., de Bakker, P. I. W., Wittenstein, E., and Ali, A. (2000). MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res. 28:250–253.

    Google Scholar 

  • Sanger, F., Thompson, E. O., and Kitai, R. 1955. The amide groups of insulin. Biochem. J. 59:509–518.

    Google Scholar 

  • Schroder, R. R., Manstein, D. J., Jahn, W., Holden, H., Rayment, I., Holmes, K. C., and Spudich, J. A. 1993. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364:171–174.

    ADS  Google Scholar 

  • Schueler-Furman, O., Wang, C., and Baker, D. 2005a. Progress in protein—protein docking: Atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility. Proteins 60:187–194.

    Google Scholar 

  • Schueler-Furman, O., Wang, C., Bradley, P., Misura, K., and Baker, D. 2005b. Progress in modeling of protein structures and interactions. Science 310:638–642.

    ADS  Google Scholar 

  • Scott, R. A., Vanderkooi, G., Tuttle, R. W., Shames, P. M., and Scheraga, H. A. 1967. Minimization of polypeptide energy, III. Application of a rapid energy minimization technique to the calculation of preliminary structures of gramicidins. Proc. Natl. Acad. Sci. USA 58:2204–2211.

    ADS  Google Scholar 

  • Shi, J., Blundell, T. L., and Mizuguchi, K. 2001. FUGUE: Sequence—structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310:243–257.

    Google Scholar 

  • Siddiqui, A. S., and Barton, G. J. 1995. Continuous and discontinuous domains: An algorithm for the automatic generation of reliable protein domain definitions. Protein Sci. 4:872–884.

    Google Scholar 

  • Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. 1999a. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins 37(S3):171–176.

    Google Scholar 

  • Simons, K. T., Kooperberg, C., Huang, E., and Baker, D. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268:209–225.

    Google Scholar 

  • Simons, K. T., Ruczinski, I., Kooperberg, C., Fox, B. A., Bystroff, C., and Baker, D. 1999b. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34:82–95.

    Google Scholar 

  • Simons, K. T., Strauss, C., and Baker, D. 2001. Prospects for ab initio protein structural genomics. J. Mol. Biol. 306:1191–1199.

    Google Scholar 

  • Sippl, M. J. 1990. Calculation of conformational ensembles from potentials of mean force: An approach to the knowledge-based prediction of local structures in globular proteins. J. Mol. Biol. 213:859–883.

    Google Scholar 

  • Skolnick, J., Kolinski, A., Brooks, C. L., III, Godzik, A., and Rey, A. 1993. A method for predicting protein structure from sequence. Curr. Biol. 3:414–423.

    Google Scholar 

  • Sucha, S., Dubose, R. F., March, C. J., and Subhashini, S. 1995. Modeling protein loops using a {phi}(i+1), {psi}(i) dimer database. Protein Sci. 4:1412–1420.

    Google Scholar 

  • Sutcliffe, M. J., Haneef, I., Carney, D., and Blundell, T. L. 1987. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1:377–384.

    Google Scholar 

  • Swindells, M. B. 1995. A procedure for detecting structural domains in proteins. Protein Sci. 4:103–112.

    Google Scholar 

  • Tieleman, D. P., and Berendsen, H. J. 1998. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys. J. 74:2786–2801.

    ADS  Google Scholar 

  • Topf, M., Baker, M. L., John, B., Chiu, W., and Sali, A. 2005. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J. Struct. Biol. 149:191–203.

    Google Scholar 

  • Topf, M., and Sali, A. 2005. Combining electron microscopy and comparative protein structure modeling. Curr. Opin. Struct. Biol. 15:578–585.

    Google Scholar 

  • Tusnady, G. E., and Simon, I. 1998. Principles governing amino acid composition of integral membrane proteins: Application to topology prediction. J. Mol. Biol. 283:489–506.

    Google Scholar 

  • Ubbink, M., Ejdeback, M., Karlsson, B. G., and Bendall, D. S. 1998. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335.

    Google Scholar 

  • Vakser, I. A. 1995. Protein docking for low-resolution structures. Protein Eng. 8:371–377.

    Google Scholar 

  • van Dijk, A. D. J., Boelens, R., and Bonvin, A. M. J. J. 2005. Data-driven docking for the study of biomolecular complexes. FEBS J. 272:293–312.

    Google Scholar 

  • van Gunsteren, W. F., and Berendsen, H. J. C. 1990. Computer simulation of molecular dynamics: Methodology, applications and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29:992–1023.

    Google Scholar 

  • van Vlijmen, H. W. T., and Karplus, M. 1997. PDB-based protein loop prediction: parameters for selection and methods for optimization. J. Mol. Biol. 267:975–1001.

    Google Scholar 

  • Vasquez, M. 1996. Modeling side-chain conformation. Curr. Opin. Struct. Biol. 6:217–221.

    Google Scholar 

  • Vitkup, D., Melamud, E., Moult, J., and Sander, C. 2001. Completeness in structural genomics. Nat. Struct. Biol. 8:559–566.

    Google Scholar 

  • von Heijne, G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225:487–494.

    Google Scholar 

  • Vonderviszt, F., and Simon, I. 1986. A possible way for prediction of domain boundaries in globular proteins from amino acid sequence. Biochem. Biophys. Res. Commun. 139:11–17.

    Google Scholar 

  • Warshel, A. 1976. Bicycle-pedal model for the first step in the vision process. Nature 260:679–683.

    ADS  Google Scholar 

  • Warshel, A. 2002. Molecular dynamics simulations of biological reactions. Acc. Chem. Res. 35:385–395.

    Google Scholar 

  • Wetlaufer, D. B. 1973. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA 70:697–701.

    ADS  Google Scholar 

  • Wheelan, S. J., Marchler-Bauer, A., and Bryant, S. H. 2000. Domain size distributions can predict domain boundaries. Bioinformatics 16:613–618.

    Google Scholar 

  • White, S. H. 2004. The progress of membrane protein structure determination. Protein Sci. 13:1948–1949.

    Google Scholar 

  • Wiehe, K., Pierce, B., Mintseris, J., Tong, W. W., Anderson, R., Chen, R., and Weng, Z. 2005. ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–213.

    Google Scholar 

  • Wodak, S. J., and Janin, J. 1981. Location of structural domains in protein. Biochemistry 20:6544–6552.

    Google Scholar 

  • Wriggers, W., Milligan, R. A., and McCammon, J. A. 1999. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125:185–195.

    Google Scholar 

  • Wriggers, W., Milligan, R. A., Schulten, K., and McCammon, J. A. 1998. Self-organizing neural networks bridge the biomolecular resolution gap. J. Mol. Biol. 284:1247–1254.

    Google Scholar 

  • Xu, D., Baburaj, K., Peterson, C. B., and Xu, Y. 2001. Model for the three-dimensional structure of vitronectin: Predictions for the multi-domain protein from threading and docking. Proteins 44:312–320.

    Google Scholar 

  • Xu, J., Li, M., Kim, D., and Xu, Y. 2003. RAPTOR: Optimal protein threading by linear programming. J. Bioinform. Comput. Biol. 1:95–117.

    Google Scholar 

  • Xu, Y., and Xu, D. 2000. Protein threading using PROSPECT: Design and evaluation. Proteins 40:343–354.

    Google Scholar 

  • Ye, Y., Li, Z., and Godzik, A. 2006. Modeling and analyzing three-dimensional structures of human disease proteins. Pac. Symp. Biocomput. (Maui).

    Google Scholar 

  • Yip, Y. L., Scheib, H., Diemand, A. V., Gattiker, A., Famiglietti, L. M., Gasteiger, E., and Bairoch, A. 2004. The Swiss-Prot variant page and the ModSNP database: A resource for sequence and structure information on human protein variants. Hum. Mutat. 23:464–470.

    Google Scholar 

  • Yona, G., and Levitt, M. 2002. Within the twilight zone: A sensitive profile—profile comparison tool based on information theory. J. Mol. Biol. 315:1257–1275.

    Google Scholar 

  • Yuan, Z., Mattick, J. S., and Teasdale, R. D. 2004. SVMtm: Support vector machines to predict transmembrane segments. J. Comp. Chem. 25:632–636.

    Google Scholar 

  • Zhai, Y., and Saier, M. H. J. R. 2002. The β-barrel finder (BBF) program, allowing identification of outer membrane β-barrel proteins encoded within prokaryotic genomes. Protein Sci. 11:2196–2207.

    Google Scholar 

  • Zhang, Y., and Skolnick, J. 2004. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc. Natl. Acad. Sci. USA 101:7594–7599.

    ADS  Google Scholar 

  • Zheng, Q., and Kyle, D. J. 1996. Accuracy and reliability of the scaling-relaxation method for loop closure: An evaluation based on extensive and multiple copy conformational samplings. Proteins 24:209–217.

    Google Scholar 

  • Zhou, H., and Zhou, Y. 2005. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58:321–328.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wooley, J.C., Ye, Y. (2007). A Historical Perspective and Overview of Protein Structure Prediction. In: Xu, Y., Xu, D., Liang, J. (eds) Computational Methods for Protein Structure Prediction and Modeling. BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68372-0_1

Download citation

Publish with us

Policies and ethics