Skip to main content

Euler-Euler Modeling of Segregated Flows and Flows with Transitions Between Different Flow Morphologies

  • Reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology
  • 553 Accesses

Abstract

Stratified two-phase flows are relevant in many industrial applications, e.g., pipelines, horizontal heat exchangers, and storage tanks. Special flow characteristics as flow rate, pressure drop, and flow regimes have always been of engineering interest. The numerical simulation of free surface flows can be performed using phase-averaged multi-fluid models, like the homogeneous and the two-fluid approaches, or non-phase-averaged variants. The approach shown in this chapter within the two-fluid framework is the algebraic interfacial area density (AIAD) model. It allows the macroscopic blending between different models for the calculation of the interfacial area density and improved models for momentum transfer in dependence on local morphology. An approach for the drag force at the free surface was introduced. The model improves the physics of the existing two-fluid approaches and is already applicable for a wide range of industrial two phase flows. A further step of improvement of modeling the turbulence was the consideration of sub-grid wave turbulence (SWT) that means waves created by Kelvin-Helmholtz instabilities that are smaller than the grid size. The new approach was verified and validated against horizontal two-phase slug flow data from the HAWAC channel and smooth stratified flow experiments of a different rectangular channel. The results approve the ability of the AIAD model to predict key flow features like liquid holdup and free surface waviness. Furthermore, an evaluation of the velocity and turbulence fields predicted by the AIAD model against experimental data was done. The results are promising and show potential for further model improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ANSYS CFX, User Manual. (Ansys, 2012)

    Google Scholar 

  • D. Bestion, Extension of CFD code application to two-phase flow safety problems. Nucl. Eng. Technol 42, 365–376 (2010a)

    Article  Google Scholar 

  • D. Bestion, Applicability of Two-Phase CFD to Nuclear Reactor Thermal Hydraulics and Elaboration of Best Practice Guidelines (CFD4NRS-3, Washington, DC, 2010b) Sept 2010, to be published in a special issue of Nuc. Eng. Des.

    Google Scholar 

  • T. Boeck, S. Zaleski, Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106-1–032106-11 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Brocchini, D.H. Peregrine, The dynamics of strong turbulence at free surfaces. Part1. Description, J. Fluid Mech. 449, 225–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • I. Celik, W. Rodi, A Deposition-Entrainment Model for Suspended Sediment Transport. Report SFB 210/T/6, Strömungstechnische Bemessungsgrundlagen für Bauwerke. University of Karlsruhe, Karlsruhe (1984)

    Google Scholar 

  • G. Cerne, S. Petelin, I. Tiselj, Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow. J. Comput. Phys. 171(2), 776–804 (2001)

    Article  MATH  Google Scholar 

  • P. Coste, J. Laviéville, A Wall Function-Like Approach for-Two-Phase CFD Condensation Modeling of the Pressurized Thermal Shock. Proceedings of NURETH-13, Kanazawa (2009)

    Google Scholar 

  • P. Coste, J. Pouvreau, C. Morel, J. Laviéville, M. Boucker, A. Martin, Modeling Turbulence and Friction Around a Large Interface in a Three-Dimension Two-Velocity Eulerian Code. Proceedings of International Conference on NURETH 12, Pittsburgh (2007)

    Google Scholar 

  • P. Coste, J. Laviéville, J. Pouvreau, C. Baudry, M. Guingo, A. Douce, Validation of the large interface method of NEPTUNE_CFD 1.0.8 for Pressurized Thermal Shock (PTS) applications. Nucl. Eng. Des. 253(0), 296–310 (2012)

    Article  Google Scholar 

  • A.V. Coward, Y. Renardy, M. Renardy, J. Richards, Temporal evolution of periodic disturbances in two-layer Couette flow. J. Comput. Phys. 132, 346–361 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Egorov, Contact Condensation in Stratified Steam-Water Flow. EVOL-ECORA –D 07 (2004). http://domino.grs.de/ecora/ecora.nsf/

  • J. Fabre, L. Masbernat, C. Suzanne, Experimental data set no. 7: Stratified flow, part i: Local structure. Multiph. Sci. Technol. 3(1–4), 285–301 (1987)

    Article  Google Scholar 

  • R. Fox, Kinetic Theory Based CFD Models for Polydisperse Multiphase Flow. Proceedings ASME Fluids Engineering Division Summer Meeting, Lake Tahoe (2013) http://www.asmeconferences.org/FEDSM2013/Plenary.cfm. Last accessed 31 July 2013

  • T. Frank, Numerical Simulations of Multiphase Flows Using CFX-5. CFX Users conference, Garmisch-Partenkirchen (2003)

    Google Scholar 

  • M. Fulgosi, D. Lakehal, S. Banerjee, V. De Angelis, Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J. Fluid Mech. 482, 319–345 (2003)

    Article  MATH  Google Scholar 

  • P. Griffith, G.B. Wallis, Two-phase slug flow. J. Heat Transf. (US) 83, 307 (1961)

    Article  Google Scholar 

  • F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • G.F. Hewitt, Phenomenological Modelling of Slug Flow. Short Course Modelling and Computation of Multiphase Flows (ETH Zurich, Zurich, 2003)

    Google Scholar 

  • C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  • C.W. Hirt, A.A. Amsden, J.L. Cook, An arbitrary lagrangian-eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  MATH  Google Scholar 

  • T. Höhne, Modelling and Validation of Turbulence Parameters at the Interface of Horizontal Multiphase Flows. Proceedings of 8th International Conference on Multiphase Flow, ICMF2013–883 (2013)

    Google Scholar 

  • T. Höhne, C. Vallée, Experiments and numerical simulations of horizontal two phase flow regimes using an interfacial area density model. J. Comput. Multiphase Flows 2, 131–143 (2010)

    Article  Google Scholar 

  • T. Höhne, H.T. Deendarlianto, D. Lucas, Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model. Int. J. Heat Fluid Flow 32, 1047–1056 (2011)

    Article  Google Scholar 

  • M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow (Springer, New York, 2006)

    Book  MATH  Google Scholar 

  • B. Launder, B. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf. 1(2), 131–137 (1974)

    Article  Google Scholar 

  • P.Y. Lin, T.J. Hanratty, Prediction of the initiation of slugs with linear stability theory. Int. J. Multiphase Flow 12, 79–98 (1986)

    Article  Google Scholar 

  • P. Liovic, D. Lakehal, Interface-turbulence interactions in large-scale bubbling processes. Int. J. Heat Fluid Flow 28, 127–144 (2007a)

    Article  Google Scholar 

  • P. Liovic, D. Lakehal, Multi-physics treatment in the vicinity of arbitrarily deformable gas-liquid interfaces. J. Comput. Phys. 222, 504–535 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes: predictive models. Int. J. Multiphase Flow 1, 537–553 (1974)

    Article  Google Scholar 

  • F.R. Menter, Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  • K. Mishima, M. Ishii, Theoretical prediction of onset of horizontal slug flow. ASME J. Fluids Eng. 102, 441–445 (1980)

    Article  Google Scholar 

  • A. Mouza, S. Paras, A. Karabelas, CFD code application to wavy stratified gas-liquid flow. Trans. IChemE 79(Part A), 561–568 (2001)

    Article  Google Scholar 

  • F. Murzyn, H. Chanson, Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 9, 143–159 (2009)

    Article  Google Scholar 

  • R. Nourgaliev, M.-S. Liou, T.G. Theofanous, Numerical prediction of interfacial instability: Sharp Interface Method (SIM). J. Comput. Phys. 227, 3940–3970 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Reboux, P. Sagaut, D. Lakehal, Large-eddy simulation of sheared interfacial flow, Phys. Fluids 18, 105 (2006)

    MATH  Google Scholar 

  • Y.D. Shikhmurzaev, Moving contact lines in liquid/liquid/solid systems. J. Fluid Mech. 334, 211–249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J. 22, 47–55 (1976)

    Article  Google Scholar 

  • Y. Taitel, A.E. Dukler, A model for slug frequency during gas-liquid flow in horizontal and near horizontal pipes. Int. J. Multiphase Flow 3, 585 (1977)

    Article  Google Scholar 

  • Y. Taitel, D. Bornea, A.E. Dukler, Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AlChE J. 26, 345–354 (1980)

    Article  Google Scholar 

  • F. Terzuoli, M. Galassi, D. Mazzini, F. D’Auria, CFD code validation against stratified air-water flow experimental data. Sci. Technol. Nucl. Installations 2008, 596 (2008)

    Article  Google Scholar 

  • C. Vallée, T. Höhne, H.M. Prasser, T. Sühnel, Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena. Nuc. Eng. Des. 238(3), 637–646 (2008)

    Article  Google Scholar 

  • P. Valluri, P.D.M. Spelt, C.J. Lawrence, G.F. Hewitt, Numerical simulation of the onset of slug initiation in laminar horizontal channel flow. Int. J. Multiphase Flow 34, 206–225 (2008)

    Article  Google Scholar 

  • G.D. Wallis, J.E. Dobson, Onset of slugging in horizontal stratified air-water flow. Int. J. Multiphase Flow 1, 173–193 (1973)

    Article  Google Scholar 

  • D.C. Wilcox, Turbulence Modelling for CFD (DCW Industries Inc., La Cañada, 1994)

    Google Scholar 

  • W. Yao, P. Coste, D. Bestion, M. Boucker, Two-Phase Pressurized Thermal Shock Investigations Using a 3D Two-Fluid Modeling of Stratified Flow with Condensation. Proceedings of 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), pp. 5–9 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Höhne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Höhne, T. (2023). Euler-Euler Modeling of Segregated Flows and Flows with Transitions Between Different Flow Morphologies. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-092-6_5

Download citation

Publish with us

Policies and ethics