Skip to main content

Rare Earth Implanted MOS Structures: Advantages and Drawbacks for Optoelectronic Applications

  • Chapter
  • First Online:
Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 2255 Accesses

Abstract

In this paper the advantages and drawbacks of rare earth-implanted MOS structures for optoelectronic applications are investigated. The discussion starts with a short overview of the electroluminescence properties and highlights the ambivalent role of hot electrons in these devises, namely the efficient excitation of rare earths ions and the efficient creation of defects. In addition, the defect shell model is addressed which explains the slight but continuous fading of the electroluminescence during device operation. Based on this, strategies for improving critical device parameters are discussed. The potential for voltage downscaling is not yet fully exploited but is generally limited by the extension of a dark zone in which the hot electrons do not yet have enough kinetic energy to excite rare earth ions. The most frequent strategies for enhancing the power efficiency comprise the increase of the excitation cross section by pumping via Si nanoclusters or via other rare earth ions. Finally, the discussion closes with the different possibilities to improve the operation lifetime, followed by a few remarks about potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Eckau, A., Neufeld, E., et al.: Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes. Appl. Phys. Lett. 71, 2824–2826 (1997)

    Article  Google Scholar 

  2. Kenyon, A.J.: Erbium in silicon. Semicond. Sci. Technol. 20, R65–R84 (2005)

    Article  Google Scholar 

  3. Jambois, O., Berencen, Y., Hijazi, K., et al.: Current transport and electroluminescence mechanisms in thin SiO2 films containing Si nanocluster-sensitized erbium ions. J. Appl. Phys. 106, 063526 (2009)

    Article  Google Scholar 

  4. Saleh, B.E., Teich, M.C.: Fundamentals of Photonics. Wiley, Hoboken (2007)

    Google Scholar 

  5. Sun, J.M., Skorupa, W., et al.: Efficient ultraviolet electroluminescence from a Gd-implanted silicon metal-oxide-semiconductor device. Appl. Phys. Lett. 85, 3387–3389 (2004)

    Article  Google Scholar 

  6. Skorupa, W., Sun, J.M., Prucnal, S. et al.: Rare earth ion implantation for silicon based light emission. In: Pichaud, B., Claverie, A., Alquier, D., Richter, H., Kittler, M. (eds.) Gettering and Defect Engineering in Semiconductor Technology Xi, pp. 755–760 (2005)

    Google Scholar 

  7. Yoshihara, M., Sekiya, A., et al.: Rare-earth-doped SiO2 films prepared by plasma-enhanced chemical vapour deposition. J. Phys. D-Appl. Phys. 30, 1908–1912 (1997)

    Article  Google Scholar 

  8. Wang, S., Amekura, H., Eckau, A., et al.: Luminescence from Er and Tb implanted into MOS tunnel diodes. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 148, 481–485 (1999)

    Article  Google Scholar 

  9. Sun, J.M., Skorupa, W., Dekorsy, T., et al.: Bright green electroluminescence from Tb3+ in silicon metal-oxide-semiconductor devices. J. Appl. Phys. 97, 123513 (2005)

    Article  Google Scholar 

  10. Prucnal, S., Sun, J.M., et al.: Switchable two-color electroluminescence based on a Si metal-oxide-semiconductor structure doped with Eu. Appl. Phys. Lett. 90, 181121 (2007)

    Article  Google Scholar 

  11. Rebohle, L., Wutzler, R., Germer, S. et al.: Er- and Nd-implanted MOS light emitting devices and their use for integrated photonic applications. In: Vivien, L., Honkanen, S.K., Pavesi, L., Pelli, S. (eds.) Silicon Photonics and Photonic Integrated Circuits III, pp. 3151–3153 (2012)

    Google Scholar 

  12. Dieke, G.H.: Spectra and Energy Levels of Rare Earth Ions in Crystals. Interscience Publ, New York (1968)

    Google Scholar 

  13. Liu, G., Jacquier, B.: Spectroscopic Properties of Rare Earths in Optical Materials. Springer, Berlin (2005)

    Google Scholar 

  14. Germer, S., Cherkouk, C., Rebohle, L. et al.: Basic structures of integrated photonic circuits for smart biosensor applications. In: Proceedings of the SPIE 8774, Optical Sensors 2013, 87740P (2013)

    Google Scholar 

  15. Prucnal, S., Sun, J.M., Muecklich, A., et al.: Flash lamp annealing versus rapid thermal and furnace annealing for optimized metal-oxide-silicon-based light-emitting diodes. Electrochem. Solid State Lett. 10, H50–H52 (2007)

    Article  Google Scholar 

  16. Sun, J.M., Prucnal, S., Skorupa, W., et al.: Electroluminescence properties of the Gd3+ ultraviolet luminescent centers in SiO2 gate oxide layers. J. Appl. Phys. 99, 103102 (2006)

    Article  Google Scholar 

  17. Rebohle, L., Skorupa, W.: Rare-Earth Implanted MOS Devices for Silicon Photonics: Microstructural, Electrical and Optoelectronic Properties. Springer, Berlin (2010)

    Book  Google Scholar 

  18. Rebohle, L., Lehmann, J., Prucnal, S., et al.: Physical limitations of the electroluminescence mechanism in terbium-based light emitters: matrix and layer thickness dependence. Appl. Phys. B-Lasers Opt. 98, 439–442 (2010)

    Article  Google Scholar 

  19. Wutzler, R.: Influence of Implantation and Annealing Conditions on the optoelectronic properties of Nd and Er doped MOS layers. Bachelor Thesis, Technical University Bergakademie Freiberg (2012)

    Google Scholar 

  20. DiMaria, D.J., Cartier, E., Buchanan, D.A.: Anode hole injection and trapping in silicon dioxide. J. Appl. Phys. 80, 304–317 (1996)

    Article  Google Scholar 

  21. Sah, C.T., Sun, J.Y.C., Tzou, J.J.T.: Study of the atomic models of 3 donorlike defects in silicon metal-oxide-semiconductor structures from their gate material and process dependencies. J. Appl. Phys. 55, 1525–1545 (1984)

    Article  Google Scholar 

  22. Stathis, J.H.: Physical and predictive models of ultrathin oxide reliability in CMOS devices and circuits. IEEE Trans. Device Mater. Reliab. 1, 43 (2001)

    Article  Google Scholar 

  23. Nazarov, A.N., Tiagulskyi, S.I., Tyagulskyy, I.P., et al.: The effect of rare-earth clustering on charge trapping and electroluminescence in rare-earth implanted metal-oxide-semiconductor light-emitting devices. J. Appl. Phys. 107, 123112 (2010)

    Article  Google Scholar 

  24. Tiagulskyi, S., Nazarov, A., Tyagulskii, I. et al.: Shell model for REOx nanoclusters in amorphous SiO2: charge trapping and electroluminescence quenching. In: Dappe, Y., Jelinek, P., Chab, V. (eds.) Physica Status Solidi C: Current Topics in Solid State Physics, vol 9, No 6. p 1468–1470 (2012)

    Google Scholar 

  25. Nazarov, A., Osiyuk, I., Tyagulskii, I., et al.: Charge trapping phenomena in high-efficiency metal-oxide-silicon light-emitting diodes with ion-implanted oxide. J. Lumin. 121, 213–216 (2006)

    Article  Google Scholar 

  26. Prucnal, S., Rebohle, L., Nazarov, A.N., et al.: Reactivation of damaged rare earth luminescence centers in ion-implanted metal-oxide-silicon light emitting devices. Appl. Phys. B-Lasers Opt. 91, 123–126 (2008)

    Article  Google Scholar 

  27. Arnold, D., Cartier, E., Dimaria, D.J.: Theory of high-field electron-transport and impact ionization in silicon dioxide. Phys. Rev. B 49, 10278–10297 (1994)

    Article  Google Scholar 

  28. Dimaria, D.J., Fischetti, M.: Hot electron transport and trapping in silicon dioxide. In: Ferradini, C., Jay-Gerin, J.P. (eds.) Excess Electrons in Dielectric Media. CRC Press, Boca Raton, p. 315 (1991)

    Google Scholar 

  29. Kenyon, A.J., Trwoga, P.F., Federighi, M., et al.: Optical properties of PECVD erbium-doped silicon-rich silica—evidence for energy transfer between silicon microclusters and erbium ions. J. Phys. Condens. Matter 6, L319–L324 (1994)

    Article  Google Scholar 

  30. Nazarov, A., Sun, J.M., Skorupa, W., et al.: Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals. Appl. Phys. Lett. 86, 151914 (2005)

    Article  Google Scholar 

  31. Franzo, G., Vinciguerra, V., Priolo, F.: Room-temperature luminescence from rare-earth ions implanted into Si nanocrystals. Philos. Mag. B 80, 719–728 (2000)

    Article  Google Scholar 

  32. Franzo, G., Pecora, E., Priolo, F., et al.: Role of the Si excess on the excitation of Er doped SiOx. Appl. Phys. Lett. 90, 183102 (2007)

    Article  Google Scholar 

  33. Iacona, F., Irrera, A., Franzo, G., et al.: Silicon-based light-emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters. IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006)

    Article  Google Scholar 

  34. Priolo, F., Presti, C.D., Franzo, G., et al.: Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices. Phys. Rev. B 73, 113302 (2006)

    Article  Google Scholar 

  35. Sun, J.M., Prucnal, S., Skorupa, W., et al.: Increase of blue electroluminescence from Ce-doped SiO2 layers through sensitization by Gd3+ ions. Appl. Phys. Lett. 89, 091908 (2006)

    Article  Google Scholar 

  36. Prucnal, S., Sun, J.M., Rebohle, L. et al. (2007) Fourfold increase of the ultraviolet (314 nm) electroluminescence from SiO2 : Gd layers by fluorine coimplantation and flash lamp annealing. Applied Physics Letters 91: 181107

    Google Scholar 

  37. Wright, P.J., Kasai, N., Inoue, S. et al.: Improvement in SiO2 gate dielectrics with fluorine incorporation. In: 1989 Symposium on VLSI Technology: Digest of Technical Papers: 51–52 (1989)

    Google Scholar 

  38. McWilliams, K.P., Halle, L.F., Zietlow, T.C.: Improved hot-carrier resistance with fluorinated gate oxides. IEEE Electron. Device Lett. 11, 3–5 (1990)

    Article  Google Scholar 

  39. Sun, J.M., Rebohle, L., Prucnal, S., et al.: Giant stability enhancement of rare-earth implanted SiO2 light emitting devices by an additional SiON protection layer. Appl. Phys. Lett. 92, 071103 (2008)

    Article  Google Scholar 

  40. Prucnal, S., Sun, J.M., Reuther, H., et al.: Strong improvement of the electroluminescence stability of SiO2: Gd layers by potassium co-implantation. Electrochem. Solid State Lett. 10, J30–J32 (2007)

    Article  Google Scholar 

  41. Muscara, A., Castagna, M.E., Leonardi, S., et al.: Design and electro-optical characterization of Si-based resonant cavity light emitting devices. IEEE J. Quantum Electron. 47, 1362–1368 (2011)

    Article  Google Scholar 

  42. Jambois, O., Ramirez, J.M., Berencen, Y., et al.: Effect of the annealing treatments on the electroluminescence efficiency of SiO2 layers doped with Si and Er. J. Phys. D-Appl. Phys. 45, 045103 (2012)

    Article  Google Scholar 

  43. Cueff, S., Labbe, C., Jambois, O., et al.: Structural factors impacting carrier transport and electroluminescence from Si nanocluster-sensitized Er ions. Opt. Express 20, 22490–22502 (2012)

    Article  Google Scholar 

  44. Yerci, S., Li, R., Dal Negro, L.: Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl. Phys. Lett. 97, 081109 (2010)

    Article  Google Scholar 

  45. Warga, J., Li, R., Basu, S.N., et al.: Erbium-doped silicon nanocrystals in silicon/silicon nitride superlattice structures: light emission and energy transfer. Physica E 41, 1040–1043 (2009)

    Article  Google Scholar 

  46. Yin, Y., Xu, W.J., Ran, G.Z., et al.: Er3+ infrared photo- and electroluminescence from Er-doped Si-rich silicon nitride films with varying Si and Er content. Funct. Mater. Lett. 4, 255–259 (2011)

    Article  Google Scholar 

  47. Yin, Y., Xu, W.J., Wei, F., et al.: Room temperature Er3+ 1.54 µm electroluminescence from Si-rich erbium silicate deposited by magnetron sputtering. J. Phys. D-Appl. Phys. 43, 335102 (2010)

    Article  Google Scholar 

  48. Irrera, A., Galli, M., Miritello, M., et al.: New approaches for enhancing light emission from Er-based materials and devices. Physica E 41, 891–898 (2009)

    Article  Google Scholar 

  49. Halioua, Y., Bazin, A., Monnier, P., et al.: Hybrid III–V semiconductor/silicon nanolaser. Opt. Express 19, 9221–9231 (2011)

    Article  Google Scholar 

  50. Ramuz, M., Burgi, L., Stanley, R., et al.: Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors. J. Appl. Phys. 105, 084508 (2009)

    Article  Google Scholar 

  51. Yamada, A., Sakuraba, M., Murota, J.: Photo detection characteristics of Si/Si1-xGex/Si p-i-n diodes integrated with optical waveguides. Thin Solid Films 508, 399–401 (2006)

    Article  Google Scholar 

  52. Miller, G.M., Briggs, R.M., Atwater, H.A.: Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation. J. Appl. Phys. 108, 063109 (2010)

    Article  Google Scholar 

  53. Ramirez, J.M., Lupi, F.F., Berencen, Y., et al.: Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip. Nanotechnology 24, 115202 (2013)

    Article  Google Scholar 

  54. Tengattini, A., Gandolfi, D., Prtljaga, N., et al.: Toward a 1.54 µm electrically driven erbium-doped silicon slot waveguide and optical amplifier. J. Lightwave Technol. 31, 391–397 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is the result of longstanding research activities involving many scientists contributing in many different ways. Special thanks go to F. Bregolin, C. Cherkouk, S. Germer, M. Helm, A. Kanjilal, J. Lehmann, A. Mrotzek, S. Prucnal, W. Skorupa, J.M. Sun, M. Voelskow, R. Wutzler and R.A. Yankov (presently or formerly at the Research Centre Dresden-Rossendorf); A. Nazarov, I.N. Osiyuk, I.P. Tjagulskii, and S. Tjagulskii (Nat. Academy of Science, Kyiv); C. Buchal and S. Mantl (Research Centre Jülich); H. Fröb and K. Leo (Technical University of Dresden); J. Biskupek and U. Kaiser (University of Ulm); Y. Berencén and B. Garrido (University of Barcelona). The authors also acknowledge the Rossendorf and Jülich Implantation Group for performing ion implantation, T. Schumann for flash lamp annealing and H. Hilliges, C. Neisser and G. Schnabel for their careful semiconductor preparation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rebohle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rebohle, L. (2014). Rare Earth Implanted MOS Structures: Advantages and Drawbacks for Optoelectronic Applications. In: Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D. (eds) Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08804-4_16

Download citation

Publish with us

Policies and ethics