Skip to main content

Machine-Learning for Static and Dynamic Electronic Structure Theory

  • Chapter
  • First Online:
Machine Learning in Molecular Sciences

Abstract

Machine learning has emerged as a powerful technique for processing large and complex datasets. Recently it has been utilized for both improving the accuracy and accelerating the computational speed of electronic structure theory. In this chapter, we provide the theoretical background of both density functional theory, the most widely used electronic structure method, and machine learning on a generally accessible level. We provide a brief overview of the most impactful results in recent times. We, further, showcase how machine learning is used to advance static and dynamic electronic structure calculations with concrete examples. This chapter highlights that fusing concepts of machine learning and density functional theory holds the promise to greatly advance electronic structure calculations enabling unprecedented applications for in-silico materials discovery and the search for novel chemical reaction pathways.

Part of this chapter has been reproduced from Ref. [1] under a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiedler L, Shah K, Bussmann M, Cangi A (2022) A deep dive into machine learning density functional theory for materials science and chemistry

    Google Scholar 

  2. Pedersen JK, Batchelor TAA, Bagger A, Rossmeisl J (2020) High-entropy alloys as catalysts for the CO\(_{2}\) and CO reduction reactions. ACS Catal 10(3):2169–2176

    Google Scholar 

  3. Ye W, Chen C, Wang Z, Chu I-H, Ong SP (2018) Deep neural networks for accurate predictions of crystal stability. Nat Commun 9(1):3800

    Google Scholar 

  4. Xiong S, Li X, Wu X, Yu J, Gorbatov OI, Di Marco I, Kent PRC, Sun W (2020) A combined machine learning and density functional theory study of binary Ti–Nb and Ti–Zr alloys: stability and Young’s modulus. Comput Mater Sci 184:109830

    Google Scholar 

  5. Meftahi N, Klymenko M, Christofferson AJ, Bach U, Winkler DA, Russo SP (2020) Machine learning property prediction for organic photovoltaic devices. npj Comput Mater 6(1):166

    Google Scholar 

  6. Salvador CAF, Zornio BF, Miranda CR (2020) Discovery of low-modulus Ti–Nb–Zr alloys based on machine learning and first-principles calculations. ACS Appl Mater Interfaces 12(51):56850–56861

    Google Scholar 

  7. Wilkins DM, Grisafi A, Yang Y, Lao KU, DiStasio RA, Ceriotti M (2019) Accurate molecular polarizabilities with coupled cluster theory and machine learning. Proc Natl Acad Sci USA 116(9):3401–3406

    Google Scholar 

  8. St. John PC, Guan Y, Kim Y, Kim S, Paton RS (2020) Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat Commun 11(1):2328

    Google Scholar 

  9. Eremin RA, Zolotarev PN, Golov AA, Nekrasova NA, Leisegang T (2019) Ionic transport in doped solid electrolytes by means of DFT modeling and ML approaches: a case study of Ti-doped KFeO\(_{2}\). J Phys Chem C 123(49):29533–29542

    Article  Google Scholar 

  10. Wu H, Lorenson A, Anderson B, Witteman L, Wu H, Meredig B, Morgan D (2017) Robust FCC solute diffusion predictions from ab-initio machine learning methods. Comput Mater Sci 134:160–165

    Article  Google Scholar 

  11. Juneja R, Singh AK (2020) Unraveling the role of bonding chemistry in connecting electronic and thermal transport by machine learning. J Mater Chem A Mater Energy Sustain 8(17):8716–8721

    Article  Google Scholar 

  12. Palizhati A, Zhong W, Tran K, Back S, Ulissi ZW (2019) Toward predicting intermetallics surface properties with high-throughput DFT and convolutional neural networks. J Chem Inf Model 59(11):4742–4749

    Article  Google Scholar 

  13. Rhone TD, Chen W, Desai S, Torrisi SB, Larson DT, Yacoby A, Kaxiras E (2020) Data-driven studies of magnetic two-dimensional materials. Sci Rep 10(1):15795

    Google Scholar 

  14. Gartner TE, Zhang L, Piaggi PM, Car R, Panagiotopoulos AZ, Debenedetti PG (2020) Signatures of a liquid–liquid transition in an ab initio deep neural network model for water. Proc Natl Acad Sci USA 117(42):26040–26046

    Article  Google Scholar 

  15. Sosso GC, Bernasconi M (2019) Harnessing machine learning potentials to understand the functional properties of phase-change materials. MRS Bull 44(09):705–709

    Article  Google Scholar 

  16. Sosso GC, Miceli G, Caravati S, Behler J, Bernasconi M (2012) Neural network interatomic potential for the phase change material GeTe. Phys Rev B 85(17):174103

    Article  Google Scholar 

  17. Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE (2019) Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun 10(1):2903

    Article  Google Scholar 

  18. Gabardi S, Baldi E, Bosoni E, Campi D, Caravati S, Sosso GC, Behler J, Bernasconi M (2017) Atomistic simulations of the crystallization and aging of GeTe nanowires. J Phys Chem C 121(42):23827–23838

    Article  Google Scholar 

  19. Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104(13):136403

    Article  Google Scholar 

  20. Thompson AP, Swiler LP, Trott CR, Foiles SM, Tucker GJ (2015) Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J Comput Phys 285:316–330

    Article  MathSciNet  MATH  Google Scholar 

  21. Wood MA, Cusentino MA, Wirth BD, Thompson AP (2019) Data-driven material models for atomistic simulation. Phys Rev B 99(18):184305

    Google Scholar 

  22. Shapeev AV (2016) Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Simul SIAM Interdiscip J 14(3):1153–1173

    Google Scholar 

  23. Podryabinkin EV, Shapeev AV (2017) Active learning of linearly parametrized interatomic potentials. Comput Mater Sci 140:171–180

    Article  Google Scholar 

  24. Snyder JC, Rupp M, Hansen K, Müller K-R, Burke K (2012) Finding density functionals with machine learning. Phys Rev Lett 108(25):1079–7114

    Article  Google Scholar 

  25. Li L, Snyder JC, Pelaschier IM, Huang J, Niranjan U-N, Duncan P, Rupp M, Müller K-R, Burke K (2016) Understanding machine-learned density functionals. Int J Quant Chem 116(11):819–833

    Article  Google Scholar 

  26. Dick S, Fernandez-Serra M (2020) Machine learning accurate exchange and correlation functionals of the electronic density. Nat Commun 11(1):3509

    Article  Google Scholar 

  27. Kirkpatrick J, McMorrow B, Turban DHP, Gaunt AL, Spencer JS, Matthews AGDG, Obika A, Thiry L, Fortunato M, Pfau D, Castellanos LR, Petersen S, Nelson AWR, Kohli P, Mori-Sánchez P, Hassabis D, Cohen AJ (2021) Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374(6573):1385–1389

    Google Scholar 

  28. Yeo BC, Kim D, Kim C, Han SS (2019) Pattern learning electronic density of states. Sci Rep 9(1):5879

    Google Scholar 

  29. Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller K-R (2017) Bypassing the Kohn–Sham equations with machine learning. Nat Commun 8(1):872

    Article  Google Scholar 

  30. Chandrasekaran A, Kamal D, Batra R, Kim C, Chen L, Ramprasad R (2019) Solving the electronic structure problem with machine learning. npj Comput Mater 5(1):22

    Google Scholar 

  31. Ellis JA, Fiedler L, Popoola GA, Modine NA, Stephens JA, Thompson AP, Cangi A, Rajamanickam S (2021) Accelerating finite-temperature Kohn–Sham density functional theory with deep neural networks. Phys Rev B 104(3):035120

    Article  Google Scholar 

  32. Zhang J, Terayama K, Sumita M, Yoshizoe K, Ito K, Kikuchi J, Tsuda K (2020) NMR-TS: de novo molecule identification from NMR spectra. Sci Technol Adv Mater 21(1):552–561

    Article  Google Scholar 

  33. Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K (2018) Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies. ACS Cent Sci 4(9):1126–1133

    Article  Google Scholar 

  34. Tian L, Yu W (2021) Effects of cluster expansion on the locations of phase transition boundary as a first step to quantify uncertainty in first principles statistical mechanics framework. Comput Mater Sci 186:110050

    Article  Google Scholar 

  35. Choudhary K, Tavazza F (2019) Convergence and machine learning predictions of Monkhorst–Pack k-points and plane-wave cut-off in high-throughput DFT calculations. Comput Mater Sci 161:300–308

    Article  Google Scholar 

  36. Grumbach MP, Hohl D, Martin RM, Car R (1994) Ab initio molecular dynamics with a finite-temperature density functional. J Phys Condens Matter 6(10):1999–2014

    Article  Google Scholar 

  37. Alavi A, Kohanoff J, Parrinello M, Frenkel D (1994) Ab initio molecular dynamics with excited electrons. Phys Rev Lett 73(19):2599–2602

    Article  Google Scholar 

  38. Alavi A, Parrinello M, Frenkel D (1995) Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter. Science (New York, NY) 269(5228):1252–1254

    Google Scholar 

  39. Marzari N, Vanderbilt D, Payne MC (1997) Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys Rev Lett 79(7):1337–1340

    Google Scholar 

  40. Alonso JL, Castro A, Echenique P, Polo V, Rubio A, Zueco D (2010) Ab initio molecular dynamics on the electronic Boltzmann equilibrium distribution. New J Phys 12(8):083064

    Article  Google Scholar 

  41. Abedi A, Maitra NT, Gross EKU (2010) Exact factorization of the time-dependent electron-nuclear wave function. Phys Rev Lett 105(12):123002

    Google Scholar 

  42. Samanta A, Morales MA, Schwegler E (2016) Exploring the free energy surface using ab initio molecular dynamics. J Chem Phys 144(16):164101

    Article  Google Scholar 

  43. Born M, Oppenheimer R (1927) Zur quantentheorie der molekeln. Ann Phys 389(20):457–484

    Article  MATH  Google Scholar 

  44. Abedi A, Maitra NT, Gross EKU (2012) Correlated electron-nuclear dynamics: exact factorization of the molecular wavefunction. J Chem Phys 137(22):22A530

    Google Scholar 

  45. Seth SK, Banerjee S, Kar T (2010) Crystal structure and DFT calculations of andrographiside. J Mol Struct 965(1–3):45–49

    Google Scholar 

  46. Fang Z, Zhao Y, Wang H, Wang J, Zhu S, Jia Y, Cho J-H, Guan S (2019) Influence of surface charge density on ligand-metal bonding: a DFT study of NH\(_{3}\) and HCOOH on Mg (0 0 0 1) surface. Appl Surf Sci 470:893–898

    Google Scholar 

  47. Civalleri B, Doll K, Zicovich-Wilson CM (2006) Ab initio investigation of structure and cohesive energy of crystalline urea. J Phys Chem B 111(1):26–33

    Article  Google Scholar 

  48. Duan Y-H, Wu Z-Y, Huang B, Chen S (2015) Phase stability and anisotropic elastic properties of the Hf–Al intermetallics: a DFT calculation. Comput Mater Sci 110:10–19

    Article  Google Scholar 

  49. Yahia MB, Lemoigno F, Beuvier T, Filhol J-S, Richard-Plouet M, Brohan L, Doublet M-L (2009) Updated references for the structural, electronic, and vibrational properties of TiO\(_{2}\)(B) bulk using first-principles density functional theory calculations. J Chem Phys 130(20):204501

    Google Scholar 

  50. Eustace DA, McComb DW, Craven AJ (2010) Probing magnetic order in EELS of chromite spinels using both multiple scattering (FEFF8.2) and DFT (WIEN2k). Micron 41(6):547–553

    Google Scholar 

  51. Pantazis DA, Orio M, Petrenko T, Zein S, Bill E, Lubitz W, Messinger J, Neese F (2009) A new quantum chemical approach to the magnetic properties of oligonuclear transition-metal complexes: application to a model for the tetranuclear manganese cluster of photosystem II. Chem Eur J 15(20):5108–5123

    Article  Google Scholar 

  52. Andriyevsky B, Pilz T, Yeon J, Halasyamani PS, Doll K, Jansen M (2013) DFT-based ab initio study of dielectric and optical properties of bulk Li\(_{2}\)B\(_{3}\)O\(_{4}\)F\(_{3}\) and Li\(_{2}\)B\(_{6}\)O\(_{9}\)F\(_{2}\). J Phys Chem Solids 74(4):616–623

    Article  Google Scholar 

  53. Mauri F, Louie SG (1996) Magnetic susceptibility of insulators from first principles. Phys Rev Lett 76(22):4246–4249

    Article  Google Scholar 

  54. La Porta FA, Gracia L, Andrés J, Sambrano JR, Varela JA, Longo E (2014) A DFT study of structural and electronic properties of ZnS polymorphs and its pressure-induced phase transitions. J Am Ceram Soc 97(12):4011–4018

    Article  Google Scholar 

  55. Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561

    Article  Google Scholar 

  56. Schwalbe S, Hahn T, Liebing S, Trepte K, Kortus J (2018) Fermi–Löwdin orbital self-interaction corrected density functional theory: ionization potentials and enthalpies of formation. J Comput Chem 39(29):2463–2471

    Google Scholar 

  57. Dittmer A, Izsák R, Neese F, Maganas D (2019) Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg Chem 58(14):9303–9315

    Article  Google Scholar 

  58. Khrapkovskii GM, Tsyshevsky RV, Chachkov DV, Egorov DL, Shamov AG (2010) Formation enthalpies and bond dissociation enthalpies for C1–C4 mononitroalkanes by composite and DFT/B3LYP methods. J Mol Struct THEOCHEM 958(1–3):1–6

    Article  Google Scholar 

  59. Zhan C-G, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107(20):4184–4195

    Article  Google Scholar 

  60. Hernández-Haro N, Ortega-Castro J, Martynov YB, Nazmitdinov RG, Frontera A (2019) DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study. Chem Phys 516:225–231

    Article  Google Scholar 

  61. Barhoumi M, Sfina N, Said M (2021) Bandgap energy and dielectric function of GaOBr monolayer using density functional theory and beyond. Solid State Commun 329:114261

    Article  Google Scholar 

  62. Daghash SM, Servio P, Rey AD (2019) Structural properties of sH hydrate: a DFT study of anisotropy and equation of state. Mol Simul 45(18):1524–1537

    Article  Google Scholar 

  63. Pribram-Jones A, Pittalis S, Gross EKU, Burke K (2014) Thermal density functional theory in context. In: Graziani F, Desjarlais MP, Redmer R, Trickey SB (eds) Lecture notes in computational science and engineering, vol 96. Springer International Publishing, Cham, pp 25–60

    Google Scholar 

  64. Baldsiefen T, Cangi A, Gross EKU (2015) Reduced-density-matrix-functional theory at finite temperature: theoretical foundations. Phys Rev A At Mol Opt Phys 92(5):052514

    Google Scholar 

  65. Mermin ND (1963) Stability of the thermal Hartree–Fock approximation. Ann Phys 21(1):99–121

    Google Scholar 

  66. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  MathSciNet  Google Scholar 

  67. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  MathSciNet  Google Scholar 

  68. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569

    Article  Google Scholar 

  69. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Google Scholar 

  70. Sun J, Ruzsinszky A, Perdew JP (2015) Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 115(3):036402

    Article  Google Scholar 

  71. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  Google Scholar 

  72. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  Google Scholar 

  73. Toulouse J (2021) Review of approximations for the exchange-correlation energy in density-functional theory. arXiv:2103.02645 [cond-mat, physics:physics]

  74. Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. Phys Rev 137(5A):A1441–A1443

    Google Scholar 

  75. Pittalis S, Proetto CR, Floris A, Sanna A, Bersier C, Burke K, Gross EKU (2011) Exact conditions in finite-temperature density-functional theory. Phys Rev Lett 107(16):163001

    Article  Google Scholar 

  76. Karasiev VV, Chakraborty D, Shukruto OA, Trickey SB (2013) Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Phys Rev B 88(16):161108

    Google Scholar 

  77. Graziani F, Desjarlais MP, Redmer R, Trickey SB (2014) Frontiers and challenges in warm dense matter, vol 96. Springer International Publishing

    Google Scholar 

  78. Brown EW, DuBois JL, Holzmann M, Ceperley DM (2013) Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature. Phys Rev B 88(8):081102

    Article  Google Scholar 

  79. Karasiev VV, Sjostrom T, Dufty J, Trickey SB (2014) Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. Phys Rev Lett 112(7):076403

    Google Scholar 

  80. Dornheim T, Groth S, Bonitz M (2018) The uniform electron gas at warm dense matter conditions. Phys Rep Rev Sect Phys Lett 744:1–86

    MathSciNet  MATH  Google Scholar 

  81. Ramakrishna K, Dornheim T, Vorberger J (2020) Influence of finite temperature exchange-correlation effects in hydrogen. Phys Rev B 101(19):195129

    Article  Google Scholar 

  82. Jones JE (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond A 106(738):463–477

    Google Scholar 

  83. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29(12):6443–6453

    Google Scholar 

  84. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50(17):1285–1288

    Google Scholar 

  85. Baskes MI (1987) Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Phys Rev Lett 59(23):2666–2669

    Article  Google Scholar 

  86. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000

    Article  Google Scholar 

  87. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42(15):9458–9471

    Article  Google Scholar 

  88. Pettifor DG, Oleinik II (1999) Analytic bond-order potentials beyond Tersoff–Brenner. I. Theory. Phys Rev B 59(13):8487–8499

    Article  Google Scholar 

  89. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  Google Scholar 

  90. van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409

    Google Scholar 

  91. Yu J, Sinnott SB, Phillpot SR (2007) Charge optimized many-body potential for the Si/SiO\(_{2}\) system. Phys Rev B 75(8):085311

    Article  Google Scholar 

  92. Smith JS, Isayev O, Roitberg AE (2017) ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci Data 4(1):170193

    Article  Google Scholar 

  93. Chan H, Narayanan B, Cherukara M, Loeffler TD, Sternberg MG, Avarca A, Sankaranarayanan SKRS (2021) BLAST: bridging length/timescales via atomistic simulation toolkit. MRS Adv 6(2):21–31

    Google Scholar 

  94. Lubbers N, Smith JS, Barros K (2018) Hierarchical modeling of molecular energies using a deep neural network. J Chem Phys 148(24):241715

    Article  Google Scholar 

  95. Schütt KT, Sauceda HE, Kindermans P-J, Tkatchenko A, Müller K-R (2018) SchNet—a deep learning architecture for molecules and materials. J Chem Phys 148(24):241722

    Article  Google Scholar 

  96. Zhang L, Han J, Wang H, Car R, Weinan E (2018) Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett 120(14):143001

    Google Scholar 

  97. Huan TD, Batra R, Chapman J, Krishnan S, Chen L, Ramprasad R (2017) A universal strategy for the creation of machine learning-based atomistic force fields. npj Comput Mater 3(1)

    Google Scholar 

  98. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000

    Google Scholar 

  99. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(25):253202

    Article  Google Scholar 

  100. Tancogne-Dejean N, Oliveira MJT, Andrade X, Appel H, Borca CH, Le Breton G, Buchholz F, Castro A, Corni S, Correa AA, De Giovannini U, Delgado A, Eich FG, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen AH, Lebedeva IV, Lüders M, Marques MAL, Ohlmann ST, Pipolo S, Rampp M, Rozzi CA, Strubbe DA, Sato SA, Schäfer C, Theophilou I, Welden A, Rubio A (2020) Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J Chem Phys 152(12):124119

    Google Scholar 

  101. The ELK code. http://elk.sourceforge.net/

  102. Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn–Sham equations. J Chem Phys 121(8):3425–3433

    Google Scholar 

  103. Pueyo AG, Marques MAL, Rubio A, Castro A (2018) Propagators for the time-dependent Kohn–Sham equations: multistep, Runge–Kutta, exponential Runge–Kutta, and commutator free magnus methods. J Chem Theory Comput 14(6):3040–3052

    Google Scholar 

  104. Bloch F (1929) Über die quantenmechanik der elektronen in kristallgittern. Z Phys 52(7):555–600

    Article  MATH  Google Scholar 

  105. Martin RM (2020) Electronic structure. Basic theory and practical methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  106. Oliphant N, Bartlett RJ (1994) A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density-functional-theory, and coupled-cluster methods. J Chem Phys 100(9):6550–6561

    Article  Google Scholar 

  107. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Google Scholar 

  108. Woon DE, Dunning TH (1994) Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J Chem Phys 100(4):2975–2988

    Google Scholar 

  109. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98(2):1358–1371

    Google Scholar 

  110. Koput J, Peterson KA (2002) Ab initio potential energy surface and vibrational-rotational energy levels of X2\(\Sigma \) + CaOH. J Phys Chem A 106(41):9595–9599

    Article  Google Scholar 

  111. Balabanov NB, Peterson KA (2005) Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn. J Chem Phys 123(6):064107

    Google Scholar 

  112. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. J Chem Phys 110(16):7667–7676

    Google Scholar 

  113. Siegbahn PEM (1980) Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations. J Chem Phys 72(3):1647–1656

    Google Scholar 

  114. Lischka H, Shepard R, Brown FB, Shavitt I (2009) New implementation of the graphical unitary group approach for multireference direct configuration interaction calculations. Int J Quant Chem 20(S15):91–100

    Article  Google Scholar 

  115. Liu B, Yoshimine M (1981) The alchemy configuration interaction method. I. The symbolic matrix method for determining elements of matrix operators. J Chem Phys 74(1):612–616

    Google Scholar 

  116. Saxe P, Fox DJ, Schaefer HF, Handy NC (1982) The shape-driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule. J Chem Phys 77(11):5584–5592

    Google Scholar 

  117. Saunders VR, van Lenthe JH (1983) The direct CI method. A detailed analysis. Mol Phys 48(5):923–954

    Article  Google Scholar 

  118. Werner H-J, Reinsch E-A (1982) The self-consistent electron pairs method for multiconfiguration reference state functions. J Chem Phys 76(6):3144–3156

    Article  Google Scholar 

  119. Werner H-J (1987) Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods. In: Special volume in memory of Ilya Prigogine, vol 69, pp 1–62

    Google Scholar 

  120. Werner H-J, Knowles PJ (1991) A comparison of variational and non-variational internally contracted multiconfiguration-reference configuration interaction calculations. Theoret Chim Acta 78(3):175–187

    Article  Google Scholar 

  121. Siegbahn PEM (1984) A new direct CI method for large CI expansions in a small orbital space. Chem Phys Lett 109(5):417–423

    Google Scholar 

  122. Knowles PJ, Handy NC (1984) A determinant based full configuration interaction program. Comput Phys Commun 54:75

    Google Scholar 

  123. Dunning TH, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Methods of electronic structure theory. Springer, pp 1–27

    Google Scholar 

  124. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622

    Google Scholar 

  125. Suellen C, Freitas RG, Loos P-F, Jacquemin D (2019) Cross-comparisons between experiment, TD-DFT, CC, and ADC for transition energies. J Chem Theory Comput 15(8):4581–4590

    Google Scholar 

  126. Wagner LK, Bajdich M, Mitas L (2009) QWalk: a quantum Monte Carlo program for electronic structure. J Comput Phys 228(9):3390–3404

    Article  MATH  Google Scholar 

  127. Kim J, Baczewski AD, Beaudet TD, Benali A, Bennett MC, Berrill MA, Blunt NS, Borda EJL et al (2018) QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. J Phys Condens Matter 30(19):195901

    Google Scholar 

  128. Barker JA (1979) A quantum-statistical Monte Carlo method; path integrals with boundary conditions. J Chem Phys 70(6):2914–2918

    Article  Google Scholar 

  129. Militzer B, González-Cataldo F, Zhang S, Driver KP, Soubiran F (2021) First-principles equation of state database for warm dense matter computation. Phys Rev E 103(1):013203

    Article  Google Scholar 

  130. Prakash A, Chitta K, Geiger A (2021) Multi-modal fusion transformer for end-to-end autonomous driving. In: 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR), June 2021. IEEE, pp 7077–7087

    Google Scholar 

  131. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  Google Scholar 

  132. Schwartz MD (2021) Modern machine learning and particle physics. Harv Data Sci Rev

    Google Scholar 

  133. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S (2020) Language models are few-shot learners. arXiv:2005.14165 [cs]

  134. Pilania G (2021) Machine learning in materials science: from explainable predictions to autonomous design. Comput Mater Sci 193:110360

    Article  Google Scholar 

  135. Mitchell TM (1997) Machine learning, 1st edn. McGraw-Hill Education, New York

    Google Scholar 

  136. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  137. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction, 2nd edn. Bradford Books, Cambridge, MA

    Google Scholar 

  138. Murphy KP (2022) Probabilistic machine learning: an introduction. MIT Press

    Google Scholar 

  139. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, vol 27. Curran Associates, Inc

    Google Scholar 

  140. Rasmussen CE, Williams CKI (2005) Gaussian processes for machine learning. In: Adaptive computation and machine learning. The MIT Press, Cambridge, MA

    Google Scholar 

  141. Rokach L, Maimon OZ (2008) Data mining with decision trees: theory and applications. World Scientific

    Google Scholar 

  142. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  143. MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. Oakland, CA, pp 281–297

    Google Scholar 

  144. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  145. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  MathSciNet  MATH  Google Scholar 

  146. Dong G, Liu H (2018) Feature engineering for machine learning and data analytics, 1st edn. CRC Press Inc, USA

    Google Scholar 

  147. Ruder S (2017) An overview of gradient descent optimization algorithms. arXiv:1609.04747 [cs]

  148. Yan X, Su XG (2009) Linear regression analysis. Theory and computing. World Scientific

    Google Scholar 

  149. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    Google Scholar 

  150. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  MATH  Google Scholar 

  151. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater 2(8):083802

    Article  Google Scholar 

  152. Vovk V (2013) Kernel ridge regression. In: Schölkopf B, Luo Z, Vovk V (eds) Empirical inference. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 105–116

    Google Scholar 

  153. Hilbe JM (2009) Logistic regression models. Taylor & Francis

    Google Scholar 

  154. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257

    Article  MathSciNet  Google Scholar 

  155. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N (2021) An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv:2010.11929

  156. Chen MX, Firat O, Bapna A, Johnson M, Macherey W, Foster G, Jones L, Schuster M, Shazeer N, Parmar N et al (2018) The best of both worlds: combining recent advances in neural machine translation. In: Proceedings of the 56th annual meeting of the association for computational linguistics (volume 1: long papers), NIPS’17, Dec 2018. Association for Computational Linguistics, Red Hook, NY, pp 6000–6010

    Google Scholar 

  157. Julie EG, Robinson YH, Jaisakthi SM (2021) Handbook of deep learning in biomedical engineering and health informatics. Biomedical engineering: techniques and applications. Apple Academic Press

    Google Scholar 

  158. Mathuriya A, Bard D, Mendygral P, Meadows L, Arnemann J, Shao L, He S, Karna T, Moise D, Pennycook SJ et al (2018) CosmoFlow: using deep learning to learn the universe at scale. In: SC18: international conference for high performance computing, networking, storage and analysis, Nov 2018. IEEE, pp 819–829

    Google Scholar 

  159. Rosenblatt F (1957) The perceptron: a perceiving and recognizing automaton (project PARA). Technical report 85-460-1. Cornell Aeronautical Laboratory

    Google Scholar 

  160. Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: comparison of trends in practice and research for deep learning. arXiv:1811.03378 [cs]

  161. Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning, pp 807–814

    Google Scholar 

  162. Gonzalez S, Miikkulainen R (2020) Improved training speed, accuracy, and data utilization through loss function optimization. In: 2020 IEEE congress on evolutionary computation (CEC), July 2020. IEEE, pp 1–8

    Google Scholar 

  163. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Lechevallier Y, Saporta G (eds) Proceedings of COMPSTAT’2010. Physica-Verlag HD, Heidelberg, pp 177–186

    Google Scholar 

  164. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  MATH  Google Scholar 

  165. Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12(61):2121–2159

    MathSciNet  MATH  Google Scholar 

  166. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. arXiv:1412.6980

  167. Practical methods of optimization | Wiley online books. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118723203

  168. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math Progr 45(1):503–528

    Article  MathSciNet  MATH  Google Scholar 

  169. Minsky M, Papert SA (2017) Perceptrons. An introduction to computational geometry, expanded, subsequent edn. The MIT Press, Cambridge, MA

    Google Scholar 

  170. Dai Z, Liu H, Le Q, Tan M (2021) CoAtNet: marrying convolution and attention for all data sizes. In: Advances in neural information processing systems 34 pre-proceedings. NeurIPS

    Google Scholar 

  171. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  172. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19(1):221–248

    Google Scholar 

  173. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF (eds) Medical image computing and computer-assisted intervention—MICCAI 2015. Lecture notes in computer science. Springer International Publishing, Cham, pp 234–241

    Google Scholar 

  174. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25. Curran Associates, Inc

    Google Scholar 

  175. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80

    Google Scholar 

  176. Miles C, Gonzalez AS, Battaglia P, Xu R, Cranmer K, Spergel D, Ho S (2020) Discovering symbolic models from deep learning with inductive biases. In: Advances in neural information processing systems, vol 33. Curran Associates Inc, Red Hook, pp 17429–17442

    Google Scholar 

  177. Park CW, Kornbluth M, Vandermause J, Wolverton C, Kozinsky B, Mailoa JP (2021) Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture. npj Comput Mater 7(1):1–9

    Google Scholar 

  178. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, vol 27. Curran Associates, Inc

    Google Scholar 

  179. Hewamalage H, Bergmeir C, Bandara K (2021) Recurrent neural networks for time series forecasting: current status and future directions. Int J Forecast 37(1):388–427

    Article  Google Scholar 

  180. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  181. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  182. Guan S, Loew M (2020) Analysis of generalizability of deep neural networks based on the complexity of decision boundary. In: 2020 19th IEEE international conference on machine learning and applications (ICMLA), Dec 2020. IEEE, pp 101–106

    Google Scholar 

  183. Cheng K, Wang N, Li M (2021) Interpretability of deep learning: a survey. In: Meng H, Lei T, Li M, Li K, Xiong N, Wang L (eds) Advances in natural computation, fuzzy systems and knowledge discovery. Advances in intelligent systems and computing. Springer International Publishing, Cham, pp 475–486

    Google Scholar 

  184. Duvenaud D (2014) Automatic model construction with Gaussian processes. Thesis, University of Cambridge

    Google Scholar 

  185. Lee J, Bahri Y, Novak R, Schoenholz SS, Pennington J, Sohl-Dickstein J (2018) Deep neural networks as Gaussian processes. arXiv:1711.00165

  186. Kuss M, Pfingsten T, Csato L, Rasmussen CE (2005) Approximate inference for robust Gaussian process regression. Technical report 136. Max Planck Institute for Biological Cybernetics

    Google Scholar 

  187. Candela JQ, Rasmussen C (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res

    Google Scholar 

  188. Halton JH (1960) On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer Math 2(1):84–90

    Article  MathSciNet  MATH  Google Scholar 

  189. Markidis S (2021) The old and the new: can physics-informed deep-learning replace traditional linear solvers? Front Big Data 4

    Google Scholar 

  190. Hastie T, Tibshirani R, Friedman J (2016) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York, NY

    Google Scholar 

  191. Murphy KP (2012) Machine learning: a probabilistic perspective, illustrated edn. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  192. Bishop CM (2006) Pattern recognition and machine learning. In: Information science and statistics. Springer-Verlag, New York

    Google Scholar 

  193. Nielsen MA (2015) Neural networks and deep learning. Determination Press, San Francisco, CA

    Google Scholar 

  194. Goodfellow I, Bengio Y, Courville A (2016) Deep learning book, illustrated edn. The MIT Press, Cambridge, MA

    MATH  Google Scholar 

  195. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  196. Mehta P, Bukov M, Wang C-H, Day AGR, Richardson C, Fisher CK, Schwab DJ (2019) A high-bias, low-variance introduction to machine learning for physicists. Phys Rep Rev Sect Phys Lett 810:1–124

    Google Scholar 

  197. Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L (2019) Machine learning and the physical sciences. Rev Mod Phys 91(4):045002

    Google Scholar 

  198. Varoquaux G, Buitinck L, Louppe G, Grisel O, Pedregosa F, Mueller A (2015) Scikit-learn. Machine learning without learning the machinery. GetMobile Mob Comput Commun 19(1):29–33

    Google Scholar 

  199. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems, vol 32. Curran Associates, Inc

    Google Scholar 

  200. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software. Available from tensorflow.org

    Google Scholar 

  201. Falcon W, The PyTorch Lightning Team (2019) PyTorch lightning, 3

    Google Scholar 

  202. Chollet F et al (2015) Keras. https://github.com/fchollet/keras

  203. Foreman-Mackey D (2015) George: Gaussian process regression. Astrophysics source code library, p ascl:1511.015

    Google Scholar 

  204. Upchurch P, Gardner J, Pleiss G, Pless R, Snavely N, Bala K, Weinberger K (2017) Deep feature interpolation for image content changes. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), vol 31, July 2017. IEEE

    Google Scholar 

  205. Mahmoud CB, Anelli A, Csányi G, Ceriotti M (2020) Learning the electronic density of states in condensed matter. Phys Rev B 102(23):235130

    Google Scholar 

  206. Tsubaki M, Mizoguchi T (2020) Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning. Phys Rev Lett 125(20):206401

    Article  Google Scholar 

  207. Cangi A, Ellis JA, Fiedler L, Kotik D, Modine NA, Oles V, Popoola GA, Rajamanickam S, Schmerler S, Stephens JA, Thompson AP (2021) MALA

    Google Scholar 

  208. Wood MA, Thompson AP (2018) Extending the accuracy of the SNAP interatomic potential form. J Chem Phys 148(24):241721

    Article  Google Scholar 

  209. Cusentino MA, Wood MA, Thompson AP (2020) Explicit multielement extension of the spectral neighbor analysis potential for chemically complex systems. J Phys Chem A 124(26):5456–5464

    Article  Google Scholar 

  210. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, in’t Veld PJ, Kohlmeyer A, Moore SG, Nguyen TD, Shan R, Stevens MJ, Tranchida J, Trott C, Plimpton SJ (2022) LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171

    Google Scholar 

  211. Giannozzi P, Baseggio O, Bonfà P, Brunato D, Car R, Carnimeo I, Cavazzoni C, de Gironcoli S, Delugas P, Ruffino FF, Ferretti A, Marzari N, Timrov I, Urru A, Baroni S (2020) Quantum ESPRESSO toward the exascale. J Chem Phys 152(15):154105

    Google Scholar 

  212. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Google Scholar 

  213. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H-Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen H-V, Otero-de-la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter 29(46):465901

    Google Scholar 

  214. Fiedler L, Cangi A (2022) LDOS/SNAP data for MALA: beryllium at 298 K, Feb 2022

    Google Scholar 

  215. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Google Scholar 

  216. Morishita T (2000) Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath. J Chem Phys 113(8):2976–2982

    Google Scholar 

  217. Dal Corso A (2014) Pseudopotentials periodic table: from H to Pu. Comput Mater Sci 95:337–350

    Article  Google Scholar 

  218. Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blügel S, Blum V, Caliste D, Castelli IE, Clark SJ, Dal Corso A, de Gironcoli S, Deutsch T, Dewhurst JK, Di Marco I, Draxl C, Dułak M, Eriksson O, Flores-Livas JA, Garrity KF, Genovese L, Giannozzi P, Giantomassi M, Goedecker S, Gonze X, Grånäs O, Gross EKU, Gulans A, Gygi F, Hamann DR, Hasnip PJ, Holzwarth NAW, Iuşan D, Jochym DB, Jollet F, Jones D, Kresse G, Koepernik K, Küçükbenli E, Kvashnin YO, Locht ILM, Lubeck S, Marsman M, Marzari N, Nitzsche U, Nordström L, Ozaki T, Paulatto L, Pickard CJ, Poelmans W, Probert MIJ, Refson K, Richter M, Rignanese G-M, Saha S, Scheffler M, Schlipf M, Schwarz K, Sharma S, Tavazza F, Thunström P, Tkatchenko A, Torrent M, Vanderbilt D, van Setten MJ, Van Speybroeck V, Wills JM, Yates JR, Zhang G-X, Cottenier S (2016) Reproducibility in density functional theory calculations of solids. Science 351(6280):aad3000. https://www.science.org/doi/pdf/10.1126/science.aad3000

  219. Fiedler L, Hoffmann N, Mohammed P, Popoola GA, Yovell T, Oles V, Ellis JA, Rajamanickam S, Cangi A (2022) Training-free hyperparameter optimization of neural networks for electronic structures in matter. Mach learn: sci technol 3(4):045008. https://dx.doi.org/10.1088/2632-2153/ac9956

  220. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J ACM 8(2):212–229

    Google Scholar 

  221. Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and now. J Comput Appl Math 124(1):191–207

    Google Scholar 

  222. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, KDD’19, Anchorage, AK. Association for Computing Machinery, New York, NY, pp 2623–2631

    Google Scholar 

  223. Mellor J, Turner J, Storkey A, Crowley EJ (2021) Neural architecture search without training. eprint: 2006.04647v1

    Google Scholar 

  224. Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440

    Google Scholar 

  225. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  226. Hennigh O, Narasimhan S, Nabian MA, Subramaniam A, Tangsali K, Rietmann M, Ferrandis JDA, Byeon W, Fang Z, Choudhry S (2020) NVIDIA SimNet\(^{\text{TM}}\): an AI-accelerated multi-physics simulation framework. arXiv:2012.07938 [physics]

  227. Cho K, van Merrienboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: encoder-decoder approaches. arXiv:1409.1259 [cs, stat]

  228. Fiedler L, Modine NA, Schmerler S, Vogel DJ, Popoola GA, Thompson AP, Rajamanickam S, Cangi A (2023) Predicting electronic structures at any length scale with machine learning. npj Comput Mater 9:115. https://doi.org/10.1038/s41524-023-01070-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Cangi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiedler, L., Shah, K., Cangi, A. (2023). Machine-Learning for Static and Dynamic Electronic Structure Theory. In: Qu, C., Liu, H. (eds) Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-37196-7_5

Download citation

Publish with us

Policies and ethics