Skip to main content

Magnetic Soft Actuators: Magnetic Soft Robots from Macro- to Nanoscale

  • Chapter
  • First Online:
Curvilinear Micromagnetism

Abstract

In this chapter, we make the very first attempt to apply concepts of curvilinear magnetism to the active research field of magnetic soft actuators and, in particular, magnetic soft robots. Specifically, we describe the interplay between the mechanical and magnetic degrees of freedom in mechanically flexible materials. The discussion starts with the common approach based on the analysis of the balance of magnetic and mechanical forces and torques to describe the actuation behavior and performance of mechanically soft magnetic thin films, wires and ribbons. The framework of curvilinear magnetism is then applied to provide an intuitive physical picture of a complex behavior of actuators possessing a complex magnetic texture. This approach allows us to predict new effects with broken symmetry on bending and twisting of actuators. For instance, a selected handedness of the magnetization rotation within the magnetic texture can lead to the energetically preferable clockwise or counter-clockwise mechanical twist. Furthermore, the chapter covers the topic of mechanically extremely soft magnetic samples (spin chains and ribbons) where the magnetic texture can affect the shape of the actuator (enable permanent bends or twists) even without applied magnetic fields. These systems can be of use for prospective magnetic robotics at the nanoscale. In this respect, the magnetic texture can result in similar mechanical effects as typically realized using shape memory polymers. We hope that this chapter will stimulate active experimental research on the validation of these recent theoretical predictions and result in the development of new application scenarios, where the asymmetric motion of magnetic actuators is the key enabler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This assumption is valid for the majority of magnetic soft robots and soft actuators.

  2. 2.

    Note, that the ruled surface is not necessary developable.

  3. 3.

    Geometrical properties of surfaces are also described in Chap. 3.

  4. 4.

    We refer the reader to Chaps. 3, 4 and 5 for the description of effects of magnetostatics on curvilinear nanomagnets.

  5. 5.

    Curvature of the chain at i-th node position is calculated as \(\kappa _i = |\boldsymbol{u}_{i+1} - \boldsymbol{u}_i|/a\). The geometry of curves is determined by the curvature \(\varkappa \) and torsion \(\tau \) which determine local bends and twists, respectively. For spin chains arranged along a planar curve, \(\tau \equiv 0\).

References

  1. D.D. Sheka, A perspective on curvilinear magnetism. Appl. Phys. Lett. 118(23), 230502 (2021)

    Article  ADS  Google Scholar 

  2. D. Makarov, O.M. Volkov, A. Kákay, O.V. Pylypovskyi, B. Budinská, O.V. Dobrovolskiy, New dimension in magnetism and superconductivity: 3D and curvilinear nano-architectures. Adv. Mater. 34, 2101758 (2022)

    Google Scholar 

  3. D.D. Sheka, O.V. Pylypovskyi, O.M. Volkov, K.V. Yershov, V.P. Kravchuk, D. Makarov, Fundamentals of curvilinear ferromagnetism: statics and dynamics of geometrically curved wires and narrow ribbons. Small 18, 2105219 (2022)

    Google Scholar 

  4. The soft touch of robots. Nat. Rev. Mater. 3(6), 71–71 (2018)

    Google Scholar 

  5. F. Schmitt, O. Piccin, L. Barbé, B. Bayle, Soft robots manufacturing: a review. Front. Robot. AI 5 (2018)

    Google Scholar 

  6. L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)

    Article  Google Scholar 

  7. F. Ni, D. Rojas, K. Tang, L. Cai, T. Asfour, A jumping robot using soft pneumatic actuator, in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 3154–3159

    Google Scholar 

  8. F. Giorgio-Serchi, A. Arienti, C. Laschi, Underwater soft-bodied pulsed-jet thrusters: actuator modeling and performance profiling. Int. J. Robot. Res. 35(11), 1308–1329 (2016)

    Google Scholar 

  9. A. Firouzeh, Y. Sun, H. Lee, J. Paik, Sensor and actuator integrated low-profile robotic origami, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nov. 2013, pp. 4937–4944

    Google Scholar 

  10. Y. Yang, Y. Chen, Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), June 2016, pp. 195–200

    Google Scholar 

  11. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8(1), 596 (2017)

    Google Scholar 

  12. J.D. Carrico, K.J. Kim, K.K. Leang, 3D-printed ionic polymer-metal composite soft crawling robot, in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp. 4313–4320

    Google Scholar 

  13. M. Yamada, M. Kondo, J.i. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: towards light-driven plastic motors. Angewandte Chemie International Edition 47(27), 4986–4988 (2008)

    Google Scholar 

  14. P. Garstecki, P. Tierno, D.B. Weibel, F. Sagués, G.M. Whitesides, Propulsion of flexible polymer structures in a rotating magnetic field. J. Phys. Condens. Matter 21(20), 204110 (2009)

    Google Scholar 

  15. X. Wang, G. Mao, J. Ge, M. Drack, G.S. Cañón Bermúdez, D. Wirthl, R. Illing, T. Kosub, L. Bischoff, C. Wang, J. Fassbender, M. Kaltenbrunner, D. Makarov, Untethered and ultrafast soft-bodied robots. Commun. Mater. 1, 67 (2020)

    Google Scholar 

  16. S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim, S.Y. Kim, S.H. Park, J.H. Jeon, S.W. Kim, C. Moon, B.J. Nelson, J.y. Kim, S.W. Yu, H. Choi, Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30) (2019)

    Google Scholar 

  17. M. Medina-Sánchez, L. Schwarz, A.K. Meyer, F. Hebenstreit, O.G. Schmidt, Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16, 555–561 (2016)

    Google Scholar 

  18. M. Cianchetti, C. Laschi, A. Menciassi, P. Dario, Biomedical applications of soft robotics. Nat. Rev. Mater. 3(6), 143–153 (2018)

    Google Scholar 

  19. S. Schuerle, A.P. Soleimany, T. Yeh, G.M. Anand, M. Häberli, H.E. Fleming, N. Mirkhani, F. Qiu, S. Hauert, X. Wang, B.J. Nelson, S.N. Bhatia, Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Sci. Adv. 5(4), eaav4803 (2019)

    Google Scholar 

  20. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Google Scholar 

  21. C. Hu, S. Pané, B.J. Nelson, Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1, 53–75 (2018)

    Google Scholar 

  22. L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94(6), 064107 (2009)

    Google Scholar 

  23. W. Hu, G.Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Google Scholar 

  24. G.Z. Lum, Z. Ye, X. Dong, H. Marvi, O. Erin, W. Hu, M. Sitti, Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. 113(41), E6007–E6015 (2016)

    Google Scholar 

  25. J.C. Breger, C. Yoon, R. Xiao, H.R. Kwag, M.O. Wang, J.P. Fisher, T.D. Nguyen, D.H. Gracias, Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7(5), 3398–3405 (2015)

    Google Scholar 

  26. S. Wu, Q. Ze, R. Zhang, N. Hu, Y. Cheng, F. Yang, R. Zhao, Symmetry-breaking actuation mechanism for soft robotics and active metamaterials. ACS Appl. Mater. Interfaces 11(44), 41649–41658 (2019)

    Google Scholar 

  27. S. Qi, H. Guo, J. Fu, Y. Xie, M. Zhu, M. Yu, 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 188, 107973 (2020)

    Google Scholar 

  28. Q. Ze, X. Kuang, S. Wu, J. Wong, S.M. Montgomery, R. Zhang, J.M. Kovitz, F. Yang, H.J. Qi, R. Zhao, Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32(4), 1906657 (2020)

    Article  Google Scholar 

  29. H.W. Huang, M.S. Sakar, A.J. Petruska, S. Pané, B.J. Nelson, Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016)

    Google Scholar 

  30. Y. Kim, H. Yuk, R. Zhao, S.A. Chester, X. Zhao, Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)

    Google Scholar 

  31. J. Tang, C. Yao, Z. Gu, S. Jung, D. Luo, D. Yang, Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angewandte Chemie International Edition 59(6), 2490–2495 (2020)

    Article  Google Scholar 

  32. X. Liu, Y. Yang, M.E. Inda, S. Lin, J. Wu, Y. Kim, X. Chen, D. Ma, T.K. Lu, X. Zhao, Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 31(27), 2010918 (2021)

    Article  Google Scholar 

  33. K. Liu, X. Pan, L. Chen, L. Huang, Y. Ni, J. Liu, S. Cao, H. Wang, Ultrasoft self-healing nanoparticle-hydrogel composites with conductive and magnetic properties. ACS Sustain. Chem. Eng. 6(5), 6395–6403 (2018)

    Article  Google Scholar 

  34. V.K. Venkiteswaran, D.K. Tan, S. Misra, Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme Mech. Lett. 41, 101023 (2020)

    Article  Google Scholar 

  35. J. Tang, B. Sun, Q. Yin, M. Yang, J. Hu, T. Wang, 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation. J. Mater. Chem. B 9(44), 9183–9190 (2021)

    Article  Google Scholar 

  36. H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, Y. Shen, A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 9(1), 3944 (2018)

    Google Scholar 

  37. M. Ha, G.S. Cañón Bermúdez, J.A.C. Liu, E.S.O. Mata, B.A. Evans, J.B. Tracy, D. Makarov, Reconfigurable magnetic origami actuators with on-board sensing for guided assembly. Adv. Mater. 33(25), 2008751 (2021)

    Google Scholar 

  38. M.M. Schmauch, S.R. Mishra, B.A. Evans, O.D. Velev, J.B. Tracy, Chained iron microparticles for directionally controlled actuation of soft robots. ACS Appl. Mater. Interfaces 9(13), 11895–11901 (2017)

    Google Scholar 

  39. B. Jang, E. Gutman, N. Stucki, B.F. Seitz, P.D. Wendel-García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or, B.J. Nelson, Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 15(7), 4829–4833 (2015)

    Google Scholar 

  40. H.J. Chung, A.M. Parsons, L. Zheng, Magnetically controlled soft robotics utilizing elastomers and gels in actuation: a review. Adv. Intell. Syst. 3(3), 2000186 (2021)

    Article  Google Scholar 

  41. Z. Liu, Z. Feng, H. Yan, X. Wang, X. Zhou, P. Qin, H. Guo, R. Yu, C. Jiang, Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5(7), 1900176 (2019)

    Google Scholar 

  42. V.K. Venkiteswaran, L.F.P. Samaniego, J. Sikorski, S. Misra, Bio-inspired terrestrial motion of magnetic soft millirobots. IEEE Robot. Autom. Lett. 4(2), 1753–1759 (2019)

    Google Scholar 

  43. J. Zhang, Z. Ren, W. Hu, R.H. Soon, I.C. Yasa, Z. Liu, M. Sitti, Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6(53), eabf0112 (2021)

    Google Scholar 

  44. Z. Ren, W. Hu, X. Dong, M. Sitti, Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10(1), 2703 (2019)

    Google Scholar 

  45. J. Coey, Magnetism and Magnetic Materials (Cambridge University Press, 2009)

    Google Scholar 

  46. G. Chen, A.K. Schmid, Imaging and tailoring the chirality of domain walls in magnetic films. Adv. Mater. 27(38), 5738–5743 (2015)

    Article  Google Scholar 

  47. R. Schäfer, P.M. Oppeneer, A.V. Ognev, A.S. Samardak, I.V. Soldatov, Analyzer-free, intensity-based, wide-field magneto-optical microscopy. Appl. Phys. Rev. 8(3), 031402 (2021)

    Google Scholar 

  48. L. Baraban, D. Makarov, M. Albrecht, N. Rivier, P. Leiderer, A. Erbe, Frustration-induced magic number clusters of colloidal magnetic particles. Phys. Rev. E 77(3), 031407 (2008)

    Google Scholar 

  49. R. Streubel, F. Kronast, P. Fischer, D. Parkinson, O.G. Schmidt, D. Makarov, Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies. Nat. Commun. 6(1), 7612 (2015)

    Google Scholar 

  50. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Y. Gaididei, Coupling of chiralities in spin and physical spaces: the Möbius ring as a case study. Phys. Rev. Lett. 114(19), 197204 (2015)

    Google Scholar 

  51. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Y. Gaididei, Curvature-induced domain wall pinning. Phys. Rev. B 92(10), 104412 (2015)

    Google Scholar 

  52. O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, K.V. Yershov, D. Makarov, Y. Gaididei, Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 6(1), 23316 (2016)

    Google Scholar 

  53. S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Ad. Mater. 24, 811–816 (2012)

    Article  Google Scholar 

  54. X. Zhao, J. Kim, C.A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, D.J. Mooney, Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. 108(1), 67–72 (2011)

    Google Scholar 

  55. N. Hohlbein, A. Shaaban, A. Schmidt, Remote-controlled activation of self-healing behavior in magneto-responsive ionomeric composites. Polymer 69, 301–309 (2015)

    Google Scholar 

  56. H. Deng, K. Sattari, Y. Xie, P. Liao, Z. Yan, J. Lin, Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat. Commun. 11(1), 6325 (2020)

    Google Scholar 

  57. Y. Li, Z. Qi, J. Yang, M. Zhou, X. Zhang, W. Ling, Y. Zhang, Z. Wu, H. Wang, B. Ning, H. Xu, W. Huo, X. Huang, Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv. Funct. Mater. 29(44), 1904977 (2019)

    Article  Google Scholar 

  58. Y. Gaididei, K.V. Yershov, D.D. Sheka, V.P. Kravchuk, A. Saxena, Magnetization-induced shape transformations in flexible ferromagnetic rings. Phys. Rev. B 99, 014404 (2019)

    Google Scholar 

  59. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, J. van den Brink, Y. Gaididei, Spontaneous deformation of flexible ferromagnetic ribbons induced by Dzyaloshinskii-Moriya interaction. Phys. Rev. B 100(14), 140407(R) (2019)

    Article  ADS  Google Scholar 

  60. A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, Heidelberg, 2009)

    Google Scholar 

  61. O.M. Volkov, A. Kákay, F. Kronast, I. Mönch, M.A. Mawass, J. Fassbender, D. Makarov, Experimental observation of exchange-driven chiral effects in curvilinear magnetism. Phys. Rev. Lett. 123, 077201 (2019)

    Google Scholar 

  62. R. Singh, P. Onck, Magnetic field induced deformation and buckling of slender bodies. Int. J. Solids Struct. 143, 29–58 (2018)

    Google Scholar 

  63. J. Ciambella, A. Favata, G. Tomassetti, A nonlinear theory for fibre-reinforced magneto-elastic rods. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474(2209), 20170703 (2018)

    Google Scholar 

  64. L. Wang, Y. Kim, C.F. Guo, X. Zhao, Hard-magnetic elastica. J. Mech. Phys. Solids 142, 104045 (2020)

    Google Scholar 

  65. J.A.C. Liu, J.H. Gillen, S.R. Mishra, B.A. Evans, J.B. Tracy, Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 5(8), eaaw2897 (2019)

    Google Scholar 

  66. O.M. O’Reilly, Modeling Nonlinear Problems in the Mechanics of Strings and Rods (Springer, 2017)

    Google Scholar 

  67. T.G. Leong, C.L. Randall, B.R. Benson, N. Bassik, G.M. Stern, D.H. Gracias, Tetherless thermobiochemically actuated microgrippers. Proc. Natl. Acad. Sci. 106(3), 703–708 (2009)

    Google Scholar 

  68. C. Wang, K. Sim, J. Chen, H. Kim, Z. Rao, Y. Li, W. Chen, J. Song, R. Verduzco, C. Yu, Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 30(13), 1706695 (2018)

    Article  Google Scholar 

  69. B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.L. Park, F. Iida, Z. Bao, R. Kramer-Bottiglio, M.T. Tolley, Electronic skins and machine learning for intelligent soft robots. Sci. Robot. 5(41), eaaz9239 (2020)

    Google Scholar 

  70. S. Miyashita, S. Guitron, M. Ludersdorfer, C.R. Sung, D. Rus, An untethered miniature origami robot that self-folds, walks, swims, and degrades, in 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, IEEE, May 2015, pp. 1490–1496

    Google Scholar 

  71. T. Xu, J. Zhang, M. Salehizadeh, O. Onaizah, E. Diller, Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 4(29), eaav4494 (2019)

    Google Scholar 

  72. J. Shintake, V. Cacucciolo, D. Floreano, H. Shea, Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018)

    Article  Google Scholar 

  73. J. Zhang, O. Onaizah, K. Middleton, L. You, E. Diller, Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2(2), 835–840 (2017)

    Google Scholar 

  74. P. von Lockette, S.E. Lofland, J. Biggs, J. Roche, J. Mineroff, M. Babcock, Investigating new symmetry classes in magnetorheological elastomers: cantilever bending behavior. Smart Mater. Struct. 20(10), 105022 (2011)

    Google Scholar 

  75. P.A. Voltairas, D.I. Fotiadis, C.V. Massalas, Modeling the hyperelasticity of magnetic field sensitive gels. J. Appl. Phys. 93(6), 3652–3656 (2003)

    Article  ADS  MATH  Google Scholar 

  76. A. Cēbers, I. Javaitis, Bending of flexible magnetic rods. Phys. Rev. E 70, 021404 (2004)

    Google Scholar 

  77. V.P. Shcherbakov, M. Winklhofer, Bending of magnetic filaments under a magnetic field. Phys. Rev. E 70, 061803 (2004)

    Google Scholar 

  78. L. Lanotte, G. Ausanio, C.L. Hison, V. Iannotti, C. Luponio, State of the art and development trends of novel nanostructured elastomagnetic composites. J. Optoelectron. Adv. Mater. 6, 523–532 (2004)

    Google Scholar 

  79. Y. Zhou, X. Zhao, J. Xu, Y. Fang, G. Chen, Y. Song, S. Li, J. Chen, Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20(12), 1670–1676 (2021)

    Article  ADS  Google Scholar 

  80. E.B. Joyee, Y. Pan, A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot. 6(3), 333–345 (2019). (PMID: 30720388)

    Article  Google Scholar 

  81. H. Ye, Y. Li, T. Zhang, Magttice: a lattice model for hard-magnetic soft materials. Soft Matter 17, 3560–3568 (2021)

    Article  ADS  Google Scholar 

  82. S. Krivoshapko, V. Ivanov, Encyclopedia of Analytical Surfaces (Springer GmbH, 2015)

    Google Scholar 

  83. S. Hyde, Z. Blum, T. Landh, The Language of Shape: The Role of Curvature in Condensed Matter: Physics, Chemistry and Biology (Elsevier Science & Technology, 1996)

    Google Scholar 

  84. W. Kühnel, Differential Geometry: Curves – Surfaces – Manifolds (American Mathematical Society, 2015)

    Google Scholar 

  85. D.D. Sheka, O.V. Pylypovskyi, P. Landeros, Y. Gaididei, A. Kákay, D. Makarov, Nonlocal chiral symmetry breaking in curvilinear magnetic shells. Commun. Phys. 3, 128 (2020)

    Article  Google Scholar 

  86. J. Rogers, Y. Huang, O.G. Schmidt, D.H. Gracias, Origami MEMS and NEMS. MRS Bull. 41(2), 123–129 (2016)

    Google Scholar 

  87. F. Gabler, D.D. Karnaushenko, D. Karnaushenko, O.G. Schmidt, Magnetic origami creates high performance micro devices. Nat. Commun. 10(1), 3013 (2019)

    Google Scholar 

  88. I. Elishakoff, Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories (World Scientific, 2019)

    Google Scholar 

  89. V.V. Slastikov, C. Sonnenberg, Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77(2), 220–235 (2012)

    Google Scholar 

  90. R.V. Kohn, V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178(2), 227–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Gaididei, A. Goussev, V.P. Kravchuk, O.V. Pylypovskyi, J.M. Robbins, D. Sheka, V. Slastikov, S. Vasylkevych, Magnetization in narrow ribbons: curvature effects. J. Phys. A: Math. Theor. 50(38), 385401 (2017)

    Google Scholar 

  92. Y.B. Gaididei, P.L. Christiansen, W.J. Zakrzewski, Conformational transformations induced by the charge-curvature interaction: mean-field approach. Phys. Rev. E 74(2), 021914 (2006)

    Google Scholar 

  93. S. Hu, Y. Jiang, A.J. Niemi, Energy functions for stringlike continuous curves, discrete chains, and space-filling one dimensional structures. Phys. Rev. D 87(10), 105011 (2013)

    Google Scholar 

  94. O.V. Pylypovskyi, D.Y. Kononenko, K.V. Yershov, U.K. Rößler, A.V. Tomilo, J. Fassbender, J. van den Brink, D. Makarov, D.D. Sheka, Curvilinear one-dimensional antiferromagnets. Nano Lett. 20(11), 8157–8162 (2020)

    Google Scholar 

  95. D.D. Sheka, V.P. Kravchuk, Y. Gaididei, Curvature effects in statics and dynamics of low dimensional magnets. J. Phys. A: Math. Theor. 48(12), 125202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. E. Efrati, E. Sharon, R. Kupferman, Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)

    Google Scholar 

  97. S. Armon, E. Efrati, R. Kupferman, E. Sharon, Geometry and mechanics in the opening of chiral seed pods. Science 333(6050), 1726–1730 (2011)

    Google Scholar 

  98. D. Cortes-Ortuno, P. Landeros, Influence of the Dzyaloshinskii-Moriya interaction on the spin-wave spectra of thin films. J. Phys. Condens. Matter 25(15), 156001 (2013)

    Google Scholar 

  99. A. Thiaville, S. Rohart, É. Jué, V. Cros, A. Fert, Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL (Europhys. Lett.) 100(5), 57002 (2012)

    Google Scholar 

  100. H. Yang, A. Thiaville, S. Rohart, A. Fert, M. Chshiev, Anatomy of Dzyaloshinskii-Moriya interaction at \({\rm Co}/{\rm Pt}\) interfaces. Phys. Rev. Lett. 115, 267210 (2015)

    Google Scholar 

  101. C. Xu, J. Feng, S. Prokhorenko, Y. Nahas, H. Xiang, L. Bellaiche, Topological spin texture in Janus monolayers of the chromium trihalides Cr(I, X)\(_3\). Phys. Rev. B 101(6), 060404 (2020)

    Article  ADS  Google Scholar 

  102. D.H. Kim, M. Haruta, H.W. Ko, G. Go, H.J. Park, T. Nishimura, D.Y. Kim, T. Okuno, Y. Hirata, Y. Futakawa, H. Yoshikawa, W. Ham, S. Kim, H. Kurata, A. Tsukamoto, Y. Shiota, T. Moriyama, S.B. Choe, K.J. Lee, T. Ono, Bulk Dzyaloshinskii-Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. (7), 685–690 (2019)

    Google Scholar 

  103. B. Miranda-Silva, P.H.C. Taveira, A.W. Teixeira, J.M. Fonseca, L.N. Rodrigues, R.G. Elías, A. Riveros, N. Vidal-Silva, V.L. Carvalho-Santos, Manipulating the shape of flexible magnetoelastic nanodiscs with meron-like magnetic states. Phys. Rev. B. 105, 104430 (2022)

    Google Scholar 

  104. A. Fernández-Pacheco, L. Skoric, J.M.D. Teresa, J. Pablo-Navarro, M. Huth, O.V. Dobrovolskiy, Writing 3D nanomagnets using focused electron beams. Materials 13(17), 3774 (2020)

    Google Scholar 

  105. D. Faurie, A.O. Adeyeye, F. Zighem, Prospects toward flexible magnonic systems. J. Appl. Phys. 130(15), 150901 (2021)

    Google Scholar 

  106. R. Streubel, E.Y. Tsymbal, P. Fischer, Magnetism in curved geometries. J. Appl. Phys. 129(21), 210902 (2021)

    Google Scholar 

  107. E.J. Smith, D. Makarov, S. Sanchez, V.M. Fomin, O.G. Schmidt, Magnetic microhelix coil structures. Phys. Rev. Lett. 107, 097204 (2011)

    Google Scholar 

  108. J. Miller, Organic magnets—a history. Adv. Mater. 14(16), 1105–1110 (2002)

    Article  Google Scholar 

  109. J.S. Miller, Organic- and molecule-based magnets. Mater. Today 17(5), 224–235 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This chapter benefited from active discussions and fruitful cooperation with Prof. Joseph B. Tracy and Prof. Michael Dickey (NC State University), Prof. Denis D. Sheka (University of Kyiv), Dr. Volodymyr P. Kravchuk (KIT Karlsruhe), Prof. Salvador Pane i Vidal (ETH Zurich), Prof. Sarthak Misra (University of Twente), Prof. Martin Kaltenbrunner (University of Linz), Prof. Leonid Ionov (University of Bayreuth). We acknowledge the financial support by the German Research Foundation (DFG) via Grants No MA 5144/9-1, MA 5144/13-1, MA5144/14-1, MA5144/22-1, MA 5144/24-1, MA 5144/28-1, the Helmholtz Association of German Research Centres in the frame of the Helmholtz Innovation Lab “FlexiSens”. KVY acknowledges financial support, in part, via the UKRATOP-project funded by the German Federal Ministry of Education and Research (Grant No. 01DK18002), by the Program of Fundamental Research of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (Project No. 0117U000240), and the National Research Foundation of Ukraine (Project No. 2020.02/0051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Pylypovskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cañón Bermúdez, G.S., López, M.N., Evans, B.A., Yershov, K.V., Makarov, D., Pylypovskyi, O.V. (2022). Magnetic Soft Actuators: Magnetic Soft Robots from Macro- to Nanoscale. In: Makarov, D., Sheka, D.D. (eds) Curvilinear Micromagnetism. Topics in Applied Physics, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-09086-8_8

Download citation

Publish with us

Policies and ethics