Skip to main content

A Patient with Congenital Generalized Lipodystrophy Due To a Novel Mutation in BSCL2: Indications for Secondary Mitochondrial Dysfunction

  • Case Report
  • Chapter
  • First Online:
Book cover JIMD Reports - Case and Research Reports, 2012/1

Part of the book series: JIMD Reports ((JIMD,volume 4))

Abstract

Background: Congenital generalized lipodystrophy (CGL) results from mutations in AGPAT2, encoding 1-acyl-glycerol-3-phosphate-acyltransferase 2 (CGL1; MIM 608594), BSCL2, encoding seipin (CGL2; MIM 269700), CAV1, encoding caveolin1 (CGL3; MIM 612526) or PTRF, encoding polymerase I and transcript release factor (CGL4; MIM 613327). This study aims to investigate the genotype/phenotype relationship and search for a possible pathogenic mechanism in a patient with CGL.

Design: Case report.

Patients and Setting: A 7-day-old child of consanguineous Turkish parents presented with a generalized loss of subcutaneous fat. He had a strikingly enlarged liver, high serum triglycerides, and hyperglycaemia, suggestive for CGL.

Results: A novel homozygous mutation in the acceptor splice site of exon 5 of the BSCL2 gene was found in the genome of the proband. This mutation causes a complex RNA splicing defect and results in two different aberrant seipin proteins, which were normally expressed and localized to the endoplasmic reticulum like wild type protein. Analysis of the patient’s urine showed intermittent elevations of citric acid intermediates and persistently high concentrations of ethylmalonic acid, suggestive of a disturbance of the mitochondrial respiratory chain.

Conclusion: Here we report abnormal urinary organic acid levels, indicative of mitochondrial dysfunction, in a patient with CGL resulting from a novel mutation in BSCL2. Our findings suggest for the first time an association between CGL and secondary mitochondrial dysfunction.

Competing interests: None declared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal AK et al (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31:21–23

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK et al (2003) Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab 88:4840–4847

    Article  PubMed  CAS  Google Scholar 

  • Agarwal AK et al (2004) Genetic basis of congenital generalized lipodystrophy. Int J Obes Relat Metab Disord 28:336–339

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston R, Moore D, Seidman JJ, Smith J, Struhl K (1993) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Bhayana S et al (2002) Cardiomyopathy in congenital complete lipodystrophy. Clin Genet 61:283–287

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Duran M, Blaskovics ME, Gibson KM (2003) In: Blau N, Duran M, Blaskovics ME, Gibson KM (eds) Physician's guide to the laboratory diagnosis of metabolic diseases. Springer, Berlin

    Chapter  Google Scholar 

  • Boutet E et al (2009) Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie 91:796–803

    Article  PubMed  CAS  Google Scholar 

  • Fei W et al (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482

    Article  PubMed  CAS  Google Scholar 

  • Friguls B et al (2009) Severe cardiac phenotype of Berardinelli-Seip congenital lipodystrophy in an infant with homozygous E189X BSCL2 mutation. Eur J Med Genet 52:14–16

    Article  PubMed  CAS  Google Scholar 

  • Garg A (2004) Acquired and inherited lipodystrophies. N Engl J Med 350:1220–1234

    Article  PubMed  CAS  Google Scholar 

  • Hayashi YK et al (2009) Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest 119:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Hegele RA et al (2007) Thematic review series: Adipocyte Biology Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res 48:1433–1444

    Article  PubMed  CAS  Google Scholar 

  • Huang-Doran I et al (2010) Lipodystrophy: metabolic insights from a rare disorder. J Endocrinol 207:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ito D et al (2008) Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 31:266–277

    Article  PubMed  CAS  Google Scholar 

  • Jeninga EH, Kalkhoven E (2010) Central players in inherited lipodystrophies. Trends Endocrinol Metab 21:581–588

    Article  PubMed  CAS  Google Scholar 

  • Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  PubMed  CAS  Google Scholar 

  • Kim CA et al (2008) Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 93:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Klar A et al (1993) Cardiomyopathy in lipodystrophy and the specificity spillover hypothesis. Isr J Med Sci 29:50–52

    PubMed  CAS  Google Scholar 

  • Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  PubMed  CAS  Google Scholar 

  • Lundin C et al (2006) Membrane topology of the human seipin protein. FEBS Lett 580:2281–2284

    Article  PubMed  CAS  Google Scholar 

  • Lupsa BC et al (2010) Cardiomyopathy in congenital and acquired generalized lipodystrophy: a clinical assessment. Medicine (Baltimore) 89:245–250

    Article  Google Scholar 

  • Magre J et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28:365–370

    Article  PubMed  CAS  Google Scholar 

  • Ortegren U et al (2007) A new role for caveolae as metabolic platforms. Trends Endocrinol Metab 18:344–349

    Article  PubMed  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Payne VA et al (2008) The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57:2055–2060

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo P (2008) In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Berlin, p 137

    Chapter  Google Scholar 

  • Savage DB et al (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507–520

    Article  PubMed  CAS  Google Scholar 

  • Sleigh A et al (2011) Mitochondrial dysfunction in patients with primary congenital insulin resistance. J Clin Invest 121:2457–2461

    Article  PubMed  CAS  Google Scholar 

  • Szymanski KM et al (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104:20890–20895

    Article  PubMed  CAS  Google Scholar 

  • van de Graaf SF et al (2006) Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 26:303–312

    Article  PubMed  Google Scholar 

  • Van Maldergem L et al (2002) Genotype-phenotype relationships in Berardinelli-Seip congenital lipodystrophy. J Med Genet 39:722–733

    Article  PubMed  Google Scholar 

  • Windpassinger C et al (2004) Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 36:271–276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Wagner (Medical University, Graz, Austria) for the seipin plasmid construct, Dr. B. Prinsen, and M. de Sain-van der Velden (Department of Metabolic Diseases, UMC Utrecht, Utrecht, The Netherlands) for their help with the organic acid analysis, and Dr. S.F. van de Graaf and Drs. H.S. Schipper (Department of Metabolic Diseases, UMC Utrecht, Utrecht, The Netherlands) for assistance with confocal immunofluorescence microscopy and helpful discussions, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Kalkhoven .

Editor information

Editors and Affiliations

Additional information

Communicated by: Wolfgang Sperl.

Electronic Supplementary material

Appendices

Synopsis

Secondary mitochondrial dysfunction in Congenital Generalized Lipodystrophy type 2 (CGL2).

Author Contributions

EHJ and NH conducted experiments, MV and JMPJB performed clinical assessments of the patient, NMVD supervised organic acid analyses, MV, RB, and EK supervised the study, and EHJ, MV, and EK wrote the manuscript.

Guarantor

Dr. E. Kalkhoven, Department of Metabolic and Endocrine Diseases, UMC Utrecht, Room KE.03.139.2, Lundlaan 6, 3584 EA Utrecht, The Netherlands. Phone: +31 88–7554258; Fax: +31-88-7554295. E-mail: e.kalkhoven@umcutrecht.nl.

Competing Interest Statement

The authors have nothing to declare.

Details of Funding

This study was supported by the research programme of The Netherlands Metabolomics Centre, which is part of The Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO). The authors confirm independence from the funding body; the content of the article has not been influenced by the funding body.

Details of Ethical Approval

No ethical approval was required for this research study.

Patient Consent Statement

Informed consent for this study was obtained from the parents of the patient.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeninga, E.H. et al. (2011). A Patient with Congenital Generalized Lipodystrophy Due To a Novel Mutation in BSCL2: Indications for Secondary Mitochondrial Dysfunction. In: JIMD Reports - Case and Research Reports, 2012/1. JIMD Reports, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2011_86

Download citation

  • DOI: https://doi.org/10.1007/8904_2011_86

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25751-3

  • Online ISBN: 978-3-642-25752-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics