Skip to main content

Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson’s Disease

  • Chapter
  • First Online:
Therapeutic Applications of Dopamine D3 Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 60))

Abstract

Parkinson’s disease (PD), which is traditionally viewed as a motor disorder involving the degeneration of dopaminergic (DA) neurons, has recently been identified as a quintessential neuropsychiatric condition. Indeed, a plethora of non-motor symptoms may occur in PD, including apathy. Apathy can be defined as a lack of motivation or a deficit of goal-directed behaviors and results in a pathological decrease of self-initiated voluntary behavior. Apathy in PD appears to fluctuate with the DA state of the patients, suggesting a critical role of DA neurotransmission in the pathophysiology of this neuropsychiatric syndrome. Using a lesion-based approach, we developed a rodent model which exhibits specific alteration in the preparatory component of motivational processes, reminiscent to apathy in PD. We found a selective decrease of DA D3 receptors (D3R) expression in the dorsal striatum of lesioned rats. Next, we showed that inhibition of D3R neurotransmission in non-lesioned animals was sufficient to reproduce the motivational deficit observed in our model. Interestingly, we also found that pharmacologically targeting D3R efficiently reversed the motivational deficit induced by the lesion. Our findings, among other recent data, suggest a critical role of D3R in parkinsonian apathy and highlight this receptor as a promising target for treating motivational deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarsland D, Marsh L, Schrag A (2009a) Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord 24:2175–2186

    Article  Google Scholar 

  • Aarsland D, Bronnick K, Alves G et al (2009b) The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry 80:928–930

    Article  CAS  Google Scholar 

  • Agid Y, Ruberg M, Dubois B, Javoy-Agid F (1984) Biochemical substrates of mental disturbances in Parkinson’s disease. Adv Neurol 40:211–218

    CAS  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR review 13. Br J Pharmacol 172:1–23

    Article  CAS  Google Scholar 

  • Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57:432–441

    Article  CAS  Google Scholar 

  • Belin D, Jonkman S, Dickinson A et al (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199:89–102

    Article  Google Scholar 

  • Beninger RJ, Banasikowski TJ (2008) Dopaminergic mechanism of reward-related incentive learning: focus on the dopamine D(3) receptor. Neurotox Res 14:57–70

    Article  CAS  Google Scholar 

  • Beninger RJ, D'Amico CM, Ranaldi R (1993) Microinjections of flupenthixol into the caudate putamen of rats produce intrasession declines in food-rewarded operant responding. Pharmacol Biochem Behav 45:343–350

    Article  CAS  Google Scholar 

  • Berke JD (2018) What does dopamine mean? Nat Neurosci 21:787–793

    Article  CAS  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  CAS  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  CAS  Google Scholar 

  • Bezard E, Ferry S, Mach U et al (2003) Attenuation of levodopa-induced dyskinesia by normalizing dopamine D3 receptor function. Nat Med 9:762–767

    Article  CAS  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP et al (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  Google Scholar 

  • Brizard M, Carcenac C, Bemelmans AP et al (2006) Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson’s disease. Neurobiol Dis 21:90–101

    Article  CAS  Google Scholar 

  • Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  Google Scholar 

  • Brown RG, Pluck G (2000) Negative symptoms: the ‘pathology’ of motivation and goal-directed behaviour. Trends Neurosci 23:412–417

    Article  CAS  Google Scholar 

  • Carcenac C, Favier M, Vachez Y et al (2015) Subthalamic deep brain stimulation differently alters striatal dopaminergic receptor levels in rats. Mov Disord 30:1739–1749

    Article  CAS  Google Scholar 

  • Carnicella S, Drui G, Boulet S et al (2014) Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl Psychiatry 4:e401

    Article  CAS  Google Scholar 

  • Castrioto A, Thobois S, Carnicella S et al (2016) Emotional manifestations of PD: neurobiological basis. Mov Disord 31:1103–1113

    Article  Google Scholar 

  • Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders. Lancet 363:978–988

    Article  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474

    Article  CAS  Google Scholar 

  • Chaudhuri KR, Healy DG, Schapira AH, National Institute for Clinical Excellence (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245

    Article  Google Scholar 

  • Corbit LH, Janak PH (2007) Inactivation of the lateral but not medial dorsal striatum eliminates the excitatory impact of Pavlovian stimuli on instrumental responding. J Neurosci 27:13977–13981

    Article  CAS  Google Scholar 

  • Czernecki V, Pillon B, Houeto JL et al (2002) Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia 40:2257–2267

    Article  CAS  Google Scholar 

  • Czernecki V, Schupbach M, Yaici S et al (2008) Apathy following subthalamic stimulation in Parkinson disease: a dopamine responsive symptom. Mov Disord 23:964–969

    Article  Google Scholar 

  • da Silva JA, Tecuapetla F, Paixao V, Costa RM (2018) Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554:244–248

    Article  Google Scholar 

  • Deniau JM, Degos B, Bosch C, Maurice N (2010) Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 32:1080–1091

    Article  Google Scholar 

  • Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci 35:68–77

    Article  CAS  Google Scholar 

  • Drapier D, Drapier S, Sauleau P et al (2006) Does subthalamic nucleus stimulation induce apathy in Parkinson’s disease? J Neurol 253:1083–1091

    Article  CAS  Google Scholar 

  • Drijgers RL, Verhey FR, Tissingh G et al (2012) The role of the dopaminergic system in mood, motivation and cognition in Parkinson’s disease: a double blind randomized placebo-controlled experimental challenge with pramipexole and methylphenidate. J Neurol Sci 320:121–126

    Article  CAS  Google Scholar 

  • Drui G, Carnicella S, Carcenac C et al (2014) Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol Psychiatry 19:358–367

    Article  CAS  Google Scholar 

  • Dujardin K, Sockeel P, Delliaux M et al (2008) The Lille apathy rating scale: validation of a caregiver-based version. Mov Disord 23:845–849

    Article  Google Scholar 

  • Dujardin K, Langlois C, Plomhause L et al (2014) Apathy in untreated early-stage Parkinson disease: relationship with other non-motor symptoms. Mov Disord 29:1796–1801

    Article  Google Scholar 

  • Favier M, Duran T, Carcenac C et al (2014) Pramipexole reverses Parkinson’s disease-related motivational deficits in rats. Mov Disord 29:912–920

    Article  CAS  Google Scholar 

  • Favier M, Carcenac C, Savasta M, Carnicella S (2017) Motivation and apathy in Parkinson’s disease: implication of dopaminergic D3 receptors. Med Sci (Paris) 33:822–824

    Article  Google Scholar 

  • Fox SH, Lang AE (2008) Levodopa-related motor complications--phenomenology. Mov Disord 23(Suppl 3):S509–S514

    Article  Google Scholar 

  • Guillin O, Diaz J, Carroll P et al (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89

    Article  CAS  Google Scholar 

  • Houeto JL, Mesnage V, Mallet L et al (2002) Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72:701–707

    Article  CAS  Google Scholar 

  • Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535:505–510

    Article  CAS  Google Scholar 

  • Howe MW, Tierney PL, Sandberg SG et al (2013) Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:575–579

    Article  CAS  Google Scholar 

  • Hurley MJ, Jenner P (2006) What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Ther 111:715–728

    Article  CAS  Google Scholar 

  • Ilango A, Kesner AJ, Keller KL et al (2014) Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J Neurosci 34:817–822

    Article  CAS  Google Scholar 

  • Isella V, Melzi P, Grimaldi M et al (2002) Clinical, neuropsychological, and morphometric correlates of apathy in Parkinson’s disease. Mov Disord 17:366–371

    Article  Google Scholar 

  • Ishizaki J, Mimura M (2011) Dysthymia and apathy: diagnosis and treatment. Depress Res Treat 2011:893905

    Google Scholar 

  • Jeanblanc J, He DY, McGough NN et al (2006) The dopamine D3 receptor is part of a homeostatic pathway regulating ethanol consumption. J Neurosci 26:1457–1464

    Article  CAS  Google Scholar 

  • Keiflin R, Pribut HJ, Shah NB, Janak PH (2019) Ventral tegmental dopamine neurons participate in reward identity predictions. Curr Biol 29:93–103.e3

    Article  CAS  Google Scholar 

  • Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277

    Article  CAS  Google Scholar 

  • Kirsch-Darrow L, Zahodne LB, Marsiske M et al (2011) The trajectory of apathy after deep brain stimulation: from pre-surgery to 6 months post-surgery in Parkinson’s disease. Parkinsonism Relat Disord 17:182–188

    Article  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  CAS  Google Scholar 

  • Krack P, Hariz MI, Baunez C et al (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33:474–484

    Article  CAS  Google Scholar 

  • Kulagowski JJ, Broughton HB, Curtis NR et al (1996) 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo-2,3-b-pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem 39:1941–1942

    Article  CAS  Google Scholar 

  • Kung MP, Chumpradit S, Frederick D et al (1994) Characterization of binding sites for [125I]R(+)trans-7-OH-PIPAT in rat brain. Naunyn Schmiedeberg’s Arch Pharmacol 350:611–617

    Article  CAS  Google Scholar 

  • Le Foll B, Goldberg SR, Sokoloff P (2005) The dopamine D3 receptor and drug dependence: effects on reward or beyond? Neuropharmacology 49:525–541

    Article  Google Scholar 

  • Le Jeune F, Drapier D, Bourguignon A et al (2009) Subthalamic nucleus stimulation in Parkinson disease induces apathy: a PET study. Neurology 73:1746–1751

    Article  Google Scholar 

  • Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234

    Article  Google Scholar 

  • Leentjens AF, Koester J, Fruh B et al (2009) The effect of pramipexole on mood and motivational symptoms in Parkinson’s disease: a meta-analysis of placebo-controlled studies. Clin Ther 31:89–98

    Article  CAS  Google Scholar 

  • Levesque D, Diaz J, Pilon C et al (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159

    Article  CAS  Google Scholar 

  • Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16:916–928

    Article  Google Scholar 

  • Lhommee E, Klinger H, Thobois S et al (2012) Subthalamic stimulation in Parkinson’s disease: restoring the balance of motivated behaviours. Brain 135:1463–1477

    Article  Google Scholar 

  • Loas G, Krystkowiak P, Godefroy O (2012) Anhedonia in Parkinson’s disease: an overview. J Neuropsychiatry Clin Neurosci 24:444–451

    Article  Google Scholar 

  • Magnard R, Vachez Y, Carcenac C et al (2016) What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson’s disease? Transl Psychiatry 6:e753

    Article  CAS  Google Scholar 

  • Marin RS (1990) Differential diagnosis and classification of apathy. Am J Psychiatry 147:22–30

    Article  CAS  Google Scholar 

  • Marin RS (1991) Apathy: a neuropsychiatric syndrome. J Neuropsychiatry Clin Neurosci 3:243–254

    Article  CAS  Google Scholar 

  • Marin RS, Biedrzycki RC, Firinciogullari S (1991) Reliability and validity of the apathy evaluation scale. Psychiatry Res 38:143–162

    Article  CAS  Google Scholar 

  • McGinty VB, Lardeux S, Taha SA et al (2013) Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78:910–922

    Article  CAS  Google Scholar 

  • Mingote S, Weber SM, Ishiwari K et al (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21:1749–1757

    Article  Google Scholar 

  • Moraga-Amaro R, Gonzalez H, Pacheco R, Stehberg J (2014) Dopamine receptor D3 deficiency results in chronic depression and anxiety. Behav Brain Res 274:186–193

    Article  CAS  Google Scholar 

  • Morissette M, Goulet M, Grondin R et al (1998) Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 10:2565–2573

    Article  CAS  Google Scholar 

  • Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16(Suppl 2):S3–S9

    Article  CAS  Google Scholar 

  • Nissenbaum H, Quinn NP, Brown RG et al (1987) Mood swings associated with the ‘on-off’ phenomenon in Parkinson’s disease. Psychol Med 17:899–904

    Article  CAS  Google Scholar 

  • Pagonabarraga J, Kulisevsky J, Strafella AP, Krack P (2015) Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol 14:518–531

    Article  Google Scholar 

  • Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 1129:35–46

    Article  CAS  Google Scholar 

  • Pecina S, Berridge KC (2013) Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered ‘wanting’ for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci 37:1529–1540

    Article  Google Scholar 

  • Pedersen KF, Larsen JP, Alves G, Aarsland D (2009) Prevalence and clinical correlates of apathy in Parkinson’s disease: a community-based study. Parkinsonism Relat Disord 15:295–299

    Article  Google Scholar 

  • Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15(Suppl 1):14–20

    Article  Google Scholar 

  • Rangel-Barajas C, Coronel I, Floran B (2015) Dopamine receptors and neurodegeneration. Aging Dis 6:349–368

    Article  Google Scholar 

  • Remy P, Doder M, Lees A et al (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128:1314–1322

    Article  Google Scholar 

  • Rossi MA, Sukharnikova T, Hayrapetyan VY et al (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8:e65799

    Article  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    Article  CAS  Google Scholar 

  • Salamone JD, Pardo M, Yohn SE et al (2016) Mesolimbic dopamine and the regulation of motivated behavior. Curr Top Behav Neurosci 27:231–257

    Article  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  Google Scholar 

  • Schmidt L, d'Arc BF, Lafargue G et al (2008) Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain 131:1303–1310

    Article  Google Scholar 

  • Shiba M, Bower JH, Maraganore DM et al (2000) Anxiety disorders and depressive disorders preceding Parkinson’s disease: a case-control study. Mov Disord 15:669–677

    Article  CAS  Google Scholar 

  • Sockeel P, Dujardin K, Devos D et al (2006) The Lille apathy rating scale (LARS), a new instrument for detecting and quantifying apathy: validation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 77:579–584

    Article  CAS  Google Scholar 

  • Sokoloff P, Diaz J, Le Foll B et al (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5:25–43

    Article  CAS  Google Scholar 

  • Srivanitchapoom P, Pitakpatapee Y, Suengtaworn A (2018) Parkinsonian syndromes: a review. Neurol India 66:S15–S25

    Article  Google Scholar 

  • Stanwood GD, Artymyshyn RP, Kung MP et al (2000) Quantitative autoradiographic mapping of rat brain dopamine D3 binding with [(125)I]7-OH-PIPAT: evidence for the presence of D3 receptors on dopaminergic and nondopaminergic cell bodies and terminals. J Pharmacol Exp Ther 295:1223–1231

    CAS  Google Scholar 

  • Starkstein SE, Brockman S (2011) Apathy and Parkinson’s disease. Curr Treat Options Neurol 13:267–273

    Article  Google Scholar 

  • Starkstein SE, Mayberg HS, Preziosi TJ et al (1992) Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 4:134–139

    Article  CAS  Google Scholar 

  • Starkstein SE, Merello M, Jorge R et al (2009) The syndromal validity and nosological position of apathy in Parkinson’s disease. Mov Disord 24:1211–1216

    Article  Google Scholar 

  • Temel Y, Tan S, Vlamings R et al (2009) Cognitive and limbic effects of deep brain stimulation in preclinical studies. Front Biosci (Landmark Ed) 14:1891–1901

    Article  Google Scholar 

  • Thobois S, Ardouin C, Lhommee E et al (2010) Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 133:1111–1127

    Article  Google Scholar 

  • Thobois S, Lhommee E, Klinger H et al (2013) Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 136:1568–1577

    Article  Google Scholar 

  • Tong ZY, Kingsbury AE, Foster OJ (2000) Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson’s disease. Brain Res Mol Brain Res 79:45–54

    Article  CAS  Google Scholar 

  • Torack RM, Morris JC (1988) The association of ventral tegmental area histopathology with adult dementia. Arch Neurol 45:497–501

    Article  CAS  Google Scholar 

  • Vachez Y, Carcenac C, Magnard R et al (2020) Subthalamic nucleus stimulation impairs motivation: implication for apathy in Parkinson’s disease. Mov Disord 35:616–628

    Article  Google Scholar 

  • Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6:487–498

    Article  CAS  Google Scholar 

  • Voon V, Dalley JW (2011) Parkinson disease: impulsive choice-Parkinson disease and dopaminergic therapy. Nat Rev Neurol 7:541–542

    Article  CAS  Google Scholar 

  • Voon V, Kubu C, Krack P et al (2006) Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 21(Suppl 14):S305–S327

    Article  Google Scholar 

  • Weintraub D, Newberg AB, Cary MS et al (2005) Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J Nucl Med 46:227–232

    CAS  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  CAS  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    Article  CAS  Google Scholar 

  • Yang P, Perlmutter JS, Benzinger TLS et al (2020) Dopamine D3 receptor: a neglected participant in Parkinson disease pathogenesis and treatment? Ageing Res Rev 57:100994

    Article  CAS  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien Carnicella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favier, M., Carcenac, C., Savasta, M., Carnicella, S. (2022). Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson’s Disease. In: Boileau, I., Collo, G. (eds) Therapeutic Applications of Dopamine D3 Receptor Function. Current Topics in Behavioral Neurosciences, vol 60. Springer, Cham. https://doi.org/10.1007/7854_2022_316

Download citation

Publish with us

Policies and ethics