Skip to main content

Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies

  • Chapter
  • First Online:
Book cover The Behavioral Neuroscience of Tinnitus

Abstract

Tinnitus, or the phantom perception of sound, arises from pathological neural activity. Neurophysiological research has shown increased spontaneous firing rates and synchronization along the auditory pathway correlate strongly with behavioral measures of tinnitus. Auditory neurons are plastic, enabling external stimuli to be utilized to elicit long-term changes to spontaneous firing and synchrony. Pathological plasticity can thus be reversed using bimodal auditory plus nonauditory stimulation to reduce tinnitus. This chapter discusses preclinical and clinical evidence for efficacy of bimodal stimulation treatments of tinnitus, with highlights on sham-controlled, double-blinded clinical trials. The results from these studies have shown some efficacy in reducing the severity of tinnitus, based on subjective and objective outcome measures including tinnitus questionnaires and psychophysical tinnitus measurements. While results of some studies have been positive, the degree of benefit and the populations that respond to treatment vary across the studies. Directions and implications of future studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M (2012) Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One 7:e35955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon B, Hamilton C, Hughes S, Meade E, Hall DA, Vanneste S, Langguth B, Lim HH (2019) Noninvasive bimodal neuromodulation for the treatment of tinnitus: protocol for a second large-scale double-blind randomized clinical trial to optimize stimulation parameters. JMIR Res Protoc 8:e13176

    Article  PubMed  PubMed Central  Google Scholar 

  • D'Arcy S, Hamilton C, Hughes S, Hall DA, Vanneste S, Langguth B, Conlon B (2017) Bi-modal stimulation in the treatment of tinnitus: a study protocol for an exploratory trial to optimise stimulation parameters and patient subtyping. BMJ Open 7:e018465

    Article  PubMed  PubMed Central  Google Scholar 

  • De Ridder D, Vanneste S, Engineer ND, Kilgard MP (2014) Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17:170–179

    Article  PubMed  Google Scholar 

  • De Ridder D, Vanneste S, Langguth B, Llinás RR (2015) Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus--possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deklerck AN, Marechal C, Pérez Fernández AM, Keppler H, Van Roost D, Dhooge IJM (2020) Invasive neuromodulation as a treatment for tinnitus: a systematic review. Neuromodul Technol Neural Interface 23:451–462 https://doi.org/10.1111/ner.13042

  • Edeline JM, Manunta Y, Hennevin E (2011) Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear Res 274:75–84

    Article  PubMed  Google Scholar 

  • Eggermont JJ (2006) Cortical tonotopic map reorganization and its implications for treatment of tinnitus. Acta Otolaryngol Suppl:9–12

    Google Scholar 

  • Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682

    Article  CAS  PubMed  Google Scholar 

  • Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS, Kilgard MP (2011) Reversing pathological neural activity using targeted plasticity. Nature 470:101–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engineer ND, Moller AR, Kilgard MP (2013) Directing neural plasticity to understand and treat tinnitus. Hear Res 295:58–66

    Article  PubMed  Google Scholar 

  • Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 256:104–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C, Birbaumer N, Larbig W, Taub E (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–484

    Article  CAS  PubMed  Google Scholar 

  • Frank E, Schecklmann M, Landgrebe M, Burger J, Kreuzer P, Poeppl TB, Kleinjung T, Hajak G, Langguth B (2012) Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol 259:327–333

    Article  PubMed  Google Scholar 

  • Fujino K, Oertel D (2003) Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci U S A 100:265–270

    Article  CAS  PubMed  Google Scholar 

  • Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton LS, Sohl-Dickstein J, Huth AG, Carels VM, Deisseroth K, Bao S (2013) Optogenetic activation of an inhibitory network enhances feedforward functional connectivity in auditory cortex. Neuron 80:1066–1076

    Article  CAS  PubMed  Google Scholar 

  • Hamilton C, D'Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ (2016) An investigation of feasibility and safety of bi-modal stimulation for the treatment of tinnitus: an open-label pilot study. Neuromodulation 19:832–837

    Article  PubMed  PubMed Central  Google Scholar 

  • Heeringa AN, Wu C, Chung C, West M, Martel D, Liberman L, Liberman MC, Shore SE (2018) Glutamatergic projections to the cochlear nucleus are redistributed in tinnitus. Neuroscience 391:91–103

    Article  CAS  PubMed  Google Scholar 

  • Henry JA (2016) “Measurement” of tinnitus. Otol Neurotol 37:e276–e285

    Article  PubMed  Google Scholar 

  • Henry JA, Meikle MB (2000) Psychoacoustic measures of tinnitus. J Am Acad Audiol 11:138–155

    CAS  PubMed  Google Scholar 

  • Hesse G (2016) Evidence and evidence gaps in tinnitus therapy. GMS Curr Top Otorhinolaryngol Head Neck Surg 15:Doc04

    PubMed  PubMed Central  Google Scholar 

  • Itoh K, Kamiya H, Mitani A, Yasui Y, Takada M, Mizuno N (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res 400:145–150

    Article  CAS  PubMed  Google Scholar 

  • Kalappa BI, Brozoski TJ, Turner JG, Caspary DM (2014) Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol 592:5065–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–172

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach JA, Zhang J (2007) Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation. Hear Res 226:232–243

    Article  CAS  PubMed  Google Scholar 

  • Kanold PO, Young ED (2001) Proprioceptive information from the pinna provides somatosensory input to cat dorsal cochlear nucleus. J Neurosci 21:7848–7858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Koehler SD, Shore SE (2013a) Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci 33(50):19647–19656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler SD, Shore SE (2013b) Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus. PLoS One 8:e59828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler SD, Pradhan S, Manis PB, Shore SE (2011) Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. Eur J Neurosci 33(3):409–420

    Article  PubMed  Google Scholar 

  • Koops EA, Renken RJ, Lanting CP, van Dijk P (2020) Cortical tonotopic map changes in humans are larger in hearing loss than in additional tinnitus. J Neurosci 40:3178–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langers DR, de Kleine E, van Dijk P (2012) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehtimaki J, Hyvarinen P, Ylikoski M, Bergholm M, Makela JP, Aarnisalo A, Pirvola U, Makitie A, Ylikoski J (2013) Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol 133:378–382

    Article  PubMed  Google Scholar 

  • Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96(26):15222–15227

    Article  PubMed  PubMed Central  Google Scholar 

  • Manzoor NF, Chen G, Kaltenbach JA (2013a) Suppression of noise-induced hyperactivity in the dorsal cochlear nucleus following application of the cholinergic agonist, carbachol. Brain Res 1523:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor NF, Gao Y, Licari F, Kaltenbach JA (2013b) Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res 295:114–123

    Article  CAS  PubMed  Google Scholar 

  • Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE (2018) Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med 10:eaal3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, Myers PJ, Newman CW, Sandridge S, Turk DC (2012) The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear 33:153–176

    Article  PubMed  Google Scholar 

  • Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108:7601–7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natan RG, Rao W, Geffen MN (2017) Cortical interneurons differentially shape frequency tuning following adaptation. Cell Rep 21:878–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    Article  CAS  PubMed  Google Scholar 

  • Oertel D, Young ED (2004) What’s a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110

    Article  CAS  PubMed  Google Scholar 

  • Osen KK, Storm-Mathisen J, Ottersen OP, Dihle B (1995) Glutamate is concentrated in and released from parallel fiber terminals in the dorsal cochlear nucleus: a quantitative immunocytochemical analysis in Guinea pig. J Comp Neurol 357:482–500

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Leaver AM, Muhlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts LE, Moffat G, Bosnyak DJ (2006) Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Otolaryngol Suppl:27–33

    Google Scholar 

  • Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ (2008) Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol 9:417–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sametsky EA, Turner JG, Larsen D, Ling L, Caspary DM (2015) Enhanced GABAA-mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J Neurosci 35:9369–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38

    Article  PubMed  Google Scholar 

  • Shargorodsky J, Curhan GC, Farwell WR (2010) Prevalence and characteristics of tinnitus among US adults. Am J Med 123:711–718

    Article  PubMed  Google Scholar 

  • Shim HJ, Kwak MY, An YH, Kim DH, Kim YJ, Kim HJ (2015) Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J Audiol Otol 19:159–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Shore SE (2005) Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci 21:3334–3348

    Article  CAS  PubMed  Google Scholar 

  • Shore SE, Martel DT (2019) Multimodal inputs to the cochlear nucleus and their role in the generation of tinnitus. In: Kandler K (ed) The Oxford handbook of the auditory brainstem, vol 226. Oxford University Press, Oxford

    Google Scholar 

  • Shore SE, Wu C (2019) Mechanisms of noise-induced tinnitus: insights from cellular studies. Neuron 103:8–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shore SE, El Kashlan H, Lu J (2003) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience 119:1085–1101

    Article  CAS  PubMed  Google Scholar 

  • Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturm JJ, Zhang-Hooks YX, Roos H, Nguyen T, Kandler K (2017) Noise trauma-induced behavioral gap detection deficits correlate with reorganization of excitatory and inhibitory local circuits in the inferior colliculus and are prevented by acoustic enrichment. J Neurosci 37:6314–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tass PA, Adamchic I, Freund HJ, von Stackelberg T, Hauptmann C (2012) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:137–159

    Article  PubMed  Google Scholar 

  • Terry AM, Jones DM, Davis BR, Slater R (1983) Parametric studies of tinnitus masking and residual inhibition. Br J Audiol 17:245–256

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195

    Article  PubMed  Google Scholar 

  • Tyler R, Cacace A, Stocking C, Tarver B, Engineer N, Martin J, Deshpande A, Stecker N, Pereira M, Kilgard M, Burress C, Pierce D, Rennaker R, Vanneste S (2017) Vagus nerve stimulation paired with tones for the treatment of tinnitus: a prospective randomized double-blind controlled pilot study in humans. Sci Rep 7:11960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725

    Article  CAS  PubMed  Google Scholar 

  • van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, Van de Heyning P, De Ridder D (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One 4:e7396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanneste S, Martin J, Rennaker RL 2nd, Kilgard MP (2017) Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study. Sci Rep 7:17345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759

    Article  CAS  PubMed  Google Scholar 

  • Weisz N, Muller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Martel DT, Shore SE (2015) Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus. Front Syst Neurosci 9:116

    PubMed  PubMed Central  Google Scholar 

  • Wu C, Martel DT, Shore SE (2016a) Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci 36:2068–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Stefanescu RA, Martel DT, Shore SE (2016b) Tinnitus: maladaptive auditory-somatosensory plasticity. Hear Res 334:20–29

    Article  PubMed  Google Scholar 

  • Zeng C, Yang Z, Shreve L, Bledsoe S, Shore S (2012) Somatosensory projections to cochlear nucleus are upregulated after unilateral deafness. J Neurosci 32:15791–15801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu C, Martel DT, West M, Sutton MA, Shore SE (2019) Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in guinea pigs. Hippocampus 29:669–682

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Shore S (2006) Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the Guinea pig. J Comp Neurol 495:100–112

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health Grants R01-DC004825 (SES), RF1-MH114244-01 (SES), T32-DC00011 (DTM), and P30-DC05188 and a grant from Michigan Institute for Clinical Health Research.

Competing Interests

DTM and SES are co-inventors on US Patent 9,682,232, Personalized auditory-somatosensory stimulation to treat tinnitus. DTM and SES are co-founders of Auricle, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Shore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riffle, T.L., Martel, D.T., Jones, G.R., Shore, S.E. (2020). Bimodal Auditory Electrical Stimulation for the Treatment of Tinnitus: Preclinical and Clinical Studies. In: Searchfield, G.D., Zhang, J. (eds) The Behavioral Neuroscience of Tinnitus. Current Topics in Behavioral Neurosciences, vol 51. Springer, Cham. https://doi.org/10.1007/7854_2020_180

Download citation

Publish with us

Policies and ethics