Skip to main content

Recent Advancements in Chiral Porphyrin Self-Assembly

  • Chapter
  • First Online:
Synthesis and Modifications of Porphyrinoids

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 33))

Abstract

The supramolecular chirogenesis in porphyrin self-assembled architectures is a field of high importance, with wide application in technology, material chemistry and medicine. In this chapter the more recent aspect of this issue will be covered, with emphasis on the experimental protocols, on the properties of the suprastructures obtained, and on their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehn J-M (1995) Supramolecular chemistry. Concepts and perspectives. VCH, Weinheim

    Google Scholar 

  2. Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48

    CAS  Google Scholar 

  3. Prins LJ, Reinhoudt DN, Timmerman P (2001) Noncovalent synthesis using hydrogen bonding. Angew Chem Int Ed 40:2382

    CAS  Google Scholar 

  4. Fujita M (1998) Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem Soc Rev 27:417

    CAS  Google Scholar 

  5. Pitt MA, Johnson DW (2007) Main group supramolecular chemistry. Chem Soc Rev 9:1441

    Google Scholar 

  6. Schottel BL, Chifotides HT, Dumbar KR (2008) Anion-π interactions. Chem Soc Rev 37:68

    CAS  Google Scholar 

  7. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114

    CAS  Google Scholar 

  8. Beale TM, Chudzinski MG, Sarwar MG, Taylor MS (2013) Halogen bonding in solution: thermodynamics and applications. Chem Soc Rev 42:1667

    CAS  Google Scholar 

  9. Dougherty DA (2013) The cation-π interaction. Acc Chem Res 46:885

    Google Scholar 

  10. Crego-Calama M, Reinhoudt DN (eds) (2006) Supramolecular chirality. Topics in current chemistry. Springer, New York, p 265

    Google Scholar 

  11. Deisenhofer J, Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Angew Chem Int Ed Engl 28:829

    Google Scholar 

  12. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wychoff HW, Phillips DC (1958) A three-dimensional model of the Myoglobin molecule obtained by X-ray. Nature 181:662

    CAS  Google Scholar 

  13. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, North ACT (1960) Structure of Hæmoglobin: a three-dimensional Fourier synthesis at 5.5-Å. Resolution, obtained by X-ray analysis. Nature 185:416

    CAS  Google Scholar 

  14. Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25:5314

    CAS  Google Scholar 

  15. Kadish KM, Smith KM, Guilard R (eds) (2010) Handbook of porphyrin science. Synthesis and coordination chemistry, vol 2. World Scientific, Singapore

    Google Scholar 

  16. Paolesse R, Monti D, Nardis S, Di Natale C (2010) Porphyrin-based chemical sensors. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol. 12, Chapter 54. World Scientific, Singapore, p. 121

    Google Scholar 

  17. de Visser SP, Nam W (2010) High-valent iron-oxo porphyrins in oxygenation reactions. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol. 10, Chapter 44. World Scientific, Singapore, p. 85

    Google Scholar 

  18. Fukuzumi S (2010) Artificial photosynthetic systems composed of porphyrins and Phthalocyanines. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol. 10, Chapter 46. World Scientific, Singapore, p. 183

    Google Scholar 

  19. Ethirajan M, Patel NJ, Pandey RK (2010) Porphyrin-based multifunctional agents for tumor-imaging and photodynamic therapy of tumors. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol. 4, Chapter 19. World Scientific, Singapore, p. 249

    Google Scholar 

  20. Kelvin WT (1894) J. Oxford Univ. Junior Scientific Club 18:1

    Google Scholar 

  21. Mislow K (2002) Stereochemical terminology and its discontents. Chirality 14:126

    CAS  Google Scholar 

  22. Lectures derived to Société Chimique de Paris; January 20 and February 3, 1860

    Google Scholar 

  23. Bentley R (2006) The nose as a stereochemist. Chem Rev 106:4099

    CAS  Google Scholar 

  24. Strong M (1999) Regulations and policies affecting FDA-regulated products. Food Drug Law J 54:3969

    Google Scholar 

  25. Klabunovsky E (2002) Short definitions of Life. In: Pàlyi G, Zucchi C, Caglioti L (eds) Fundamentals of life. Elsevier, New York

    Google Scholar 

  26. Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium chlorate crystallization. Science 250:975

    CAS  Google Scholar 

  27. Kondepudi DK, Asakura K (2001) Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc Chem Res 34:946

    CAS  Google Scholar 

  28. Thiemann W (1974) Disproporptionation of enantiomers by precipitation. J Mol Evol 4:85

    CAS  Google Scholar 

  29. Thiemann W, Darge W (1974) Experimental attempts for the study of the origin of optical activity on earth. Orig Life Evol Biosphere 5:263

    CAS  Google Scholar 

  30. Lee TD, Young CN (1957) Experimental test of parity conservation in beta-decay. Phys Rev 105:1413

    Google Scholar 

  31. Goldhaber ML, Grodsins L, Sunyar A (1958) Helicity of neutrinos. Phys Rev 109:1015

    CAS  Google Scholar 

  32. Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264

    Google Scholar 

  33. Rein DW (1974) Some remarks on parity violating effects of intramolecular interactions. J Mol Evol 4:15

    CAS  Google Scholar 

  34. Woods CS, Bennett SC, Cho D, Masterson BP, Robert JL, Tanner CE, Wieman CE (1997) Measure of parity nonconservation and an anapole moment in cesium. Science 275:1759

    Google Scholar 

  35. Hegström R, Rein D, Sandars P (1980) Calculation of the parity nonconserving energy difference between mirror-image molecules. J Chem Phys 73:2329

    Google Scholar 

  36. Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Angew Chem Int Ed 41:4618

    CAS  Google Scholar 

  37. Quack M, Stohner J (2001) Molecular chirality and the fundamental symmetry of physics: influence of parity violation on rotovibrational frequencies and thermodynamic properties. Chirality 13:745

    CAS  Google Scholar 

  38. Schwerdtfeger P, Gierlich J, Bollwein T (2003) Large parity-violation effects in heavy-metal-containing chiral compounds. Angew Chem Int Ed 42:1293

    CAS  Google Scholar 

  39. Schwerdtfeger P, Bast R (2004) Large parity violation effects in the vibrational spectrum of organometallic compounds. J Am Chem Soc 126:1652

    CAS  Google Scholar 

  40. Meierhenrich UJ, Nakon L, Alcaraz C, Bradehöft JH, Hoffmann SV, Barbier B, Brock A (2005) Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew Chem Int Ed 44:5630

    CAS  Google Scholar 

  41. Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59

    CAS  Google Scholar 

  42. Keszthelyi L (1995) Origin of the homochirality of biomolecules. Quart Rev Biophys 28:473

    CAS  Google Scholar 

  43. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, Mc Call A, Clark S, Ménard F, Tamura M (1998) Circular polarization in star – formation regions: implications for biomolecular homochirality. Science 281:672

    CAS  Google Scholar 

  44. Bailey J, Chrysostomou A, Hough JH, Gledhill TM, Mc Call A, Clark S, Ménard F, Tamura M (2001) Astronomical sources of circularly polarised light and the origin of homochirality. Orig Life Evol Biosph 31:167

    CAS  Google Scholar 

  45. Engel MH, Macko SA (1997) Isotopic evidences for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265

    CAS  Google Scholar 

  46. Kooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrell L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879

    Google Scholar 

  47. Engel MH, Mecko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:47

    CAS  Google Scholar 

  48. Cronin JR, Pizzarello S (1999) Amino acid enantiomer excess in meteorites: origin and significance. Adv Space Res 23:293

    CAS  Google Scholar 

  49. Cronin JR, Pizzarello S (1997) Enantiomeric excess in meteoritic amino acids. Science 275:951

    CAS  Google Scholar 

  50. Ehrenfrend P, Glavin DP, Botta O, Cooper G, Bada JL (2001) Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of Cl type carbonaceous chondrites. Proc Natl Acad Sci USA 98:2138

    Google Scholar 

  51. Nelson DR, Trendall AF, Altermann W (1999) Chronological correlation between Pilbara and Kaapvaal cratons. Precambrian Res 97:165

    CAS  Google Scholar 

  52. Ribò JM, Crusats J, Sagués F, Claret J, Rubires R (2001) Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292:2063

    Google Scholar 

  53. Frank FC (1953) On spontaneous asymmetric synthesis. Biochim Biophys Acta 11:459

    CAS  Google Scholar 

  54. Kondepudi DK, Prigogine I (1998) Modern thermodynamics. From heat engines to dissipative structures. Wiley, New York

    Google Scholar 

  55. Soai K, Shibata T, Morioka H, Choji K (1995) Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767

    CAS  Google Scholar 

  56. Soai K, Shibata T, Sato I (2000) Enantioselective automultiplication of chiral molecules by asymmetric autocatalysis. Acc Chem Res 33:382

    CAS  Google Scholar 

  57. Lavabre D, Micheau J-C, Islas JR, Buhse T (2008) Kinetic insight into specific features of the autocatalytic Soai reaction. Top Curr Chem 284:67

    CAS  Google Scholar 

  58. Blackmond DG (2004) Proc Natl Acad Sci USA 101:5732

    CAS  Google Scholar 

  59. Schiaffino L, Ercolani G (2008) Unravelling the mechanism of the Soai asymmetric autocatalytic reaction by First-Principle-Calculations: induction and amplification of chirality by self-assembly of hexamolecular complexes. Angew Chem Int Ed 47:6832

    CAS  Google Scholar 

  60. Sato I, Sugia R, Matsueda Y, Furumura Y, Soai K (2004) Asymmetric synthesis utilizing circularly polarized light mediated by the photoequilibrium of chiral olefins in conjunction with asymmetric autocatalysis. Angew Chem Int Ed 43:4490

    CAS  Google Scholar 

  61. Soai K, Kawasaki T, Sato I (2006) In: Rappoport Z, Marek I (eds) The chemistry of organozinc compounds, part 2. Wiley, Chichester, p. 380

    Google Scholar 

  62. El-Hachemi Z, Mancini G, Ribò JM, Sorrenti A (2008) Role of hydrophobic effect in the transfer of chirality from molecules to complex systems: from chiral surfactants to porphyrin/surfactants aggregates. J Am Chem Soc 130:15176

    CAS  Google Scholar 

  63. Rubires R, Farrera J-A, Ribò JM (2001) Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem Eur J 7:436

    CAS  Google Scholar 

  64. El-Hachemi Z, Escudero C, Arteaga O, Canillas A, Crusats J, Mancini G, Purrello R, Sorrenti A, D’Urso A, Ribò JM (2009) Chiral sign selection of the J-aggregates of diprotonated tetrakis-(4-sulfonatophenyl)porphyrin by traces of unidentified chiral contaminants present in the ultra-pure water used as solvent. Chirality 21:408

    CAS  Google Scholar 

  65. Andrade SM, Teixeira R, Costa SM, Sobral AJFN (2008) Self-aggregation of free base porphyrins in aqueous solution and in DMPC vesicles. Biophys Chem 133:1

    CAS  Google Scholar 

  66. Andrade SM, Costa SMB (2006) Spectroscopic studies of water-soluble porphyrins with protein encapsulated in bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles: aggregation versus complexation. Chem Eur J 12:1046

    CAS  Google Scholar 

  67. Andrade SM, Costa SMB (2011) Tetrakis(4-sulfonatophenyl)porphyrin fluorescence as reporter of human serum albumin structural changes induced by guanidine hydrochloride. J Photochem Photobiol A Chem 217:125

    CAS  Google Scholar 

  68. Zhao L, Ma R, Li J, Li Y, An Y, Shi L (2008) J- and H-aggregates of 5,10,15,20,-(4-sulfonatophenyl)-porphyrin and interconversion in PEG-b-P4VP micelles. Biomacromol 9:2601

    CAS  Google Scholar 

  69. Zhao L, Wang X, Ma R, An Y, Shi L (2009) Chiral micelles of achiral TPPS and diblock copolymer induced by amino acids. Macromolecules 42:6253

    CAS  Google Scholar 

  70. Zhao L, Xiang R, Ma R, Wang X, An Y, Shi L (2011) Chiral conversion and memory of TPPS J-aggregates in complex micelles: PEG-b-PDMAEMA/TPPS. Langmuir 7:1154

    Google Scholar 

  71. Monti D, Venanzi M, Mancini G, Di Natale C, Paolesse R (2005) Supramolecular chirality control by solvent changes. Solvodichroic effect on chiral porphyrin aggregation. Chem Commun 2471

    Google Scholar 

  72. Monti D, De Rossi M, Sorrenti A, Laguzzi G, Gatto E, Stefanelli M, Venenzi M, Luvidi L, Mancini G, Paolesse R (2010) Supramolecular chirality in solvent-promoted aggregation of amphiphilic porphyrin derivatives: kinetic studies and comparison between solution behaviour and solid-state morphology by AFM topography. Chem Eur J 16:880

    Google Scholar 

  73. Pasternack RF, Fleming C, Herring S, Collings PJ, dePaula J, DeCastro G, Gibbs EJ (2000) Aggregation kinetics of extended porphyrin and cyanine dye assemblies. Biophys J 79:550

    CAS  Google Scholar 

  74. Monti D, Venanzi M, Stefanelli M, Sorrenti A, Mancini G, Di Natale C, Paolesse R (2007) Chiral amplification of chiral porphyrin derivatives by template heteroaggeration. J Am Chem Soc 129:6688

    CAS  Google Scholar 

  75. Stepanek P, Dukh M, Saman D, Moravcova J, Kniezo L, Monti D, Venanzi M, Mancini G, Drasar P (2007) Synthesis and solvent-driven self-aggregation studies of meso-“C-glycoside”-porphyrin derivatives. Org Biomol Chem 5:960

    CAS  Google Scholar 

  76. Monti D, Venanzi M, Gatto E, Mancini G, Sorrenti A, Stepanek P, Drasar P (2008) Study of the supramolecular chiral assembly of meso-“C-glucoside”-porphyrin derivatives in aqueous media. New J Chem 32:2127

    CAS  Google Scholar 

  77. Zelenka K, Trnka T, Tislerova I, Monti D, Cinti S, Naitana ML, Schiaffino L, Venanzi M, Laguzzi G, Luvidi L, Mancini G, Novakova Z, Simak O, Wimmer Z, Drasar P (2011) Spectroscopic, morphological, and mechanistic investigation of the solvent-promoted aggregation of porphyrins modified in meso-positions by glucosylated steroids. Chem Eur J 17:13743

    CAS  Google Scholar 

  78. Lettieri R, Monti D, Zelenka K, Trnka T, Drasar P, Venanzi M (2012) Glucosylated steroid-porphyrins as new tools for nanotechnology applications. New J Chem 36:1246

    CAS  Google Scholar 

  79. Dukh M, Saman D, Lang K, Pouzar V, Cerny I, Drasar P, Kral V (2007) Steroid-porphyrin conjugate for saccharide sensing in protic media. Org Biomol Chem 1:3548

    Google Scholar 

  80. Sakakibara S, Nakatsubo F, French AD, Rosenau T (2012) Chiroptical properties of an alternatingly functionalized cellotriose bearing two porphyrin groups. Chem Commun 48:7672

    CAS  Google Scholar 

  81. Lv F, He X, Lu L, Wu L, Liu T (2011) A novel water-soluble near-infrared glucose-conjugated porphyrin: synthesis, properties and its optical imaging effect. J Porphyrins Phthalocyanines 15:218

    Google Scholar 

  82. Iavicoli P, Xu H, Feldborg LN, Linares M, Paradinos M, Stafström S, Ocal C, Niet-Ortega B, Casado J, Lopez Navarrete JT, Lazzaroni R, De Feyter S, Amabilino DB (2010) Tuning the supramolecular chirality of one- and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins. J Am Chem Soc 132:9350

    CAS  Google Scholar 

  83. Linares M, Iavicoli P, Psychogyiopoulou K, Beljonne D, De Feyter S, Amabilino DB, Lazzaroni R (2008) Chiral expression at the solid–liquid interfaces: a joint experimental and theoretical study of the self-assembly of chiral porphyrins on graphite. Langmuir 24:9566

    CAS  Google Scholar 

  84. Ma S, Cao X, Mak M, Sadik A, Walkner C, Freedman TB, Lednev IK, Dukor RK, Nafie LA (2007) Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J Am Chem Soc 129:12364

    CAS  Google Scholar 

  85. Nieto-Ortega B, Ramìrez FJ, Amabilino DA, Linares M, Beljonne D, Lòpez Navarrete JT, Casado J (2012) Electronic and vibrational circular dichroism spectroscopies for the understanding of chiral organization in porphyrin aggregates. Chem Commun 48:9147

    CAS  Google Scholar 

  86. Iavicoli P, Simòn-Sorbed M, Amabilino DB (2009) Surface morphology of chiral porphyrins as a function of constitution and amphiphilic nature. New J Chem 33:358

    CAS  Google Scholar 

  87. Feldborg NL, Saletra WJ, Iavicoli P, Amabilino DB (2011) Central metal ion determined self-assembly of intrinsically chiral porphyrins. J Porphyrins Phthalocyanines 15:996

    Google Scholar 

  88. Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S (1995) A helical polymer with a cooperative response to chiral information. Science 268:1860

    CAS  Google Scholar 

  89. van Gestel J, Palmans ARA, Titulaer B, Vekemans JAJM, Meijer EW (2005) “Majority-rules” operative in chiral columnar stacks of C 3-symmetrical molecules. J Am Chem Soc 127:5490

    Google Scholar 

  90. Hoeben FJM, Wolffs M, Zhong J, De Feyter S, Leclère PELG, Schenning APHJ, Meijer EW (2007) Influence of supramolecular organization on energy transfer properties in chiral oligo(p-phenylene vinylene) porphyrin assemblies. J Am Chem Soc 129:9819

    CAS  Google Scholar 

  91. Helmich F, Lee CC, Nieuwenhuizen MML, Gielen JC, Christianen PCM, Larsen A, Fytas G, Leclère PELG, Schenning APJH, Meijer EW (2010) Dilution-induced self-assembly of porphyrin aggregates: a consequence of coupled equilibria. Angew Chem Int Ed 49:3939

    CAS  Google Scholar 

  92. Smoulders MMJ, Schenning APHJ, Meijer EW (2008) Insights into the mechanisms of cooperative self-assembly: the “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J Am Chem Soc 130:606

    Google Scholar 

  93. Helmich F, Lee CC, Schenning APHJ, Meijer EW (2010) Chiral memory via chiral amplification and selective depolymerisation of porphyrin aggregates. J Am Chem Soc 132:16753

    CAS  Google Scholar 

  94. Purrello R (2003) Supramolecular chemistry: lasting chiral memory. Nat Mater 2:216

    CAS  Google Scholar 

  95. Helmich F, Smulders MMJ, Lee CC, Schenning APHJ, Meijer EW (2011) Effect of stereogenic centers on the self-sorting, depolymerisation, and atropisomerisation kinetics of porphyrin-based aggregates. J Am Chem Soc 133:12238

    CAS  Google Scholar 

  96. Smoulders MMJ, Filot IAW, Leenders JMA, van der Scoot P, Palmans ARA, Schenning APHJ, Meijer EW (2010) Tuning the extent of chiral amplification by temperature in a dynamic supramolecular polymer. J Am Chem Soc 132:611

    Google Scholar 

  97. van Hameren R, Schön P, van Buul AM, Hoogboom J, Lazarenko SV, Gerritsen JW, Engelkamp H, Christianen PCM, Heus HA, Maan JC, Rasing T, Speller S, Rowan AE, Elemans JAAW, Nolte RJM (2006) Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 314:1433

    Google Scholar 

  98. van Hameren R, van Buul AM, Castriciano MA, Villari V, Micali N, Schön P, Speller S, Monsù Scolaro L, Rowan AE, Elemans JAAW, Nolte RJM (2008) Supramolecular porphyrin polymers in solution and at the solid–liquid interface. Nano Lett 8:253

    Google Scholar 

  99. Veling N, van Hameren R, van Buul AM, Rowan AE, Nolte RJM, Elemans JAAW (2012) Solvent-dependent amplification of chirality in assemblies of porphyrin trimers based on benzene tricarboamide. Chem Commun 48:4371

    CAS  Google Scholar 

  100. Balaban TS (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38:612

    CAS  Google Scholar 

  101. Balaban TS, Linke-Scaetzel M, Bhise AD, Vanthuyne N, Roussel C, Anson CO, Buth G, Eichhöfer A, Foster K, Garab G, Glieman H, Goddard R, Javorfi T, Powell AK, Rösner H, Schimmel T (2005) Structural characterization of artificial self-assembling porphyrin that mimic the natural chlorosomal bacteriochlorophylls c, d, and e. Chem Eur J 11:2268

    Google Scholar 

  102. Balaban TS, Berova N, Drain CM, Hauschild R, Huang X, Kalt H, Lebedkin S, Lehn J-M, Nifaitis F, Pescitelli G, Prokhorenko VI, Riedel G, Smeureanu G, Zeller J (2007) Syntheses and energy transfer in multiporphyrinic arrays self-assembled with idrogen-bonding recognition groups and comparison with covalent steroidal models. Chem Eur J 13:8411

    CAS  Google Scholar 

  103. Huijer A, Merek PL, Savenije TJ, Siebbeles LDA, Scherer T, Hauschild R, Szmytkowski J, Kalt H, Hehn H, Balaban TS (2007) Photosensitization of TiO2 and SnO2 by artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls. J Phys Chem C 111:11726

    Google Scholar 

  104. Szmytkowski J, Conradt J, Kuhn H, Reddy CM, Balaban MC, Balaban TS, Kalt H (2011) Self-assemblies of novel magnesium porphyrins mimicking natural chlorosomal bacteriochlorophylls. J Phys Chem C 115:8832

    CAS  Google Scholar 

  105. Balaban TS, Bhise AD, Bringmann G, Bürk J, Chappez-Gillot C, Eichhöfer A, Fonske D, Götz DCG, Knauer M, Mizoguchi T, Mössinger D, Rösner H, Roussel C, Schraut M, Tamiaki H, Vanthuyne N (2009) Mimics of the self-assembling chlorosomal bacteriochlorophylls: region- and stereoselective synthesis and stereoanalysis of acyl(1-hydroxyalky)porphyrins. J Am Chem Soc 131:14480

    CAS  Google Scholar 

  106. Chappaz-Gillot C, Marek PL, Blaive BJ, Canard G, Bürck J, Garab G, Hahn H, Javorfi T, Kelemen L, Krupke R, Mössinger D, Ormos P, Reddy CM, Roussel C, Steinbach G, Szabo M, Ulrich AS, Vanthuyne N, Vijayaraghavan A, Zupcanova A, Balaban TS (2012) Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light harvesting systems. J Am Chem Soc 134:944

    CAS  Google Scholar 

  107. Ulman A (1991) An introduction to ultrathin organic films – from Langmuir-Blodgett to self-assembly. Academic, Boston, MA

    Google Scholar 

  108. Chen P, Ma X, Duan P, Liu M (2006) Chiral amplification of porphyrin assemblies exclusively constructed from achiral porphyrin derivatives. ChemPhysChem 7:2419

    CAS  Google Scholar 

  109. Zhang Y, Chen P, Liu M (2008) A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins. Chem Eur J 14:1793

    CAS  Google Scholar 

  110. Zhang Y, Chen P, Ma Y, He S, Liu M (2009) Acidification and assembly of porphyrin at an interface: counterion matching, selectivity, and supramolecular chirality. ACS Appl Mater Interfaces 1:2036

    CAS  Google Scholar 

  111. De Luca G, Romeo A, Monsù Scolaro L (2005) Role of the counteranions in the acid-induced aggregation of isomeric tetrapyridylporphyrins in organic solvents. J Phys Chem B 109:719

    Google Scholar 

  112. Doan SC, Shanmughan S, Aston DE, McHale JL (2005) Counterion dependent dye aggregates: nanorods and nanorings of tetra(p-carboxyphenyl)porphyrin. J Am Chem Soc 127:5885

    CAS  Google Scholar 

  113. Qiu Y, Chen P, Liu M (2010) Interfacial assemblies of atypical amphiphilic porphyrins: hydrophobicity/hydrophilicity of substituents, annealing effects, and supramolecular chirality. Langmuir 26:15272

    CAS  Google Scholar 

  114. Yao Y, Qiu Y, Chen P, Ma Y, He S, Zheng J-H, Liu M (2010) Interfacial molecular assemblies of metalloporphyrins with two trans or one axial ligands. ChemPhysChem 11:722

    CAS  Google Scholar 

  115. Rong Y, Chen P, Wang D, Liu M (2012) Porphyrin assemblies through the air/water interface: effect of Hydrogen bond, thermal annealing, and amplification of supramolecular chirality. Langmuir 28:6356

    CAS  Google Scholar 

  116. Chen P, Ma X, Hu K, Rong Y, Liu M (2011) Left or right? The direction of compression-generated vortex-like flow selects the macroscopic chirality of interfacial molecular assemblies. Chem Eur J 17:12108

    CAS  Google Scholar 

  117. Avetisov V, Goldanskii V (1996) Mirror symmetry breaking at the molecular level. Proc Natl Acad Sci USA 93:11435

    CAS  Google Scholar 

  118. Ohno O, Kaizu Y, Kobayashi H (1993) J-aggregate formation of a water soluble porphyrin in acidic aqueous media. J Chem Phys 99:4128

    CAS  Google Scholar 

  119. Crusats J, Claret JM, Diez-Pérez I, El-Hachem Z, Garcia-Hortega H, Rubires R, Sagués F, Ribò JM (2003) Chiral shape and enantioselective growth of colloidal particles of self-assembled meso-tetra(phenyl and 4-sulfonatophenyl)porphyrins. Chem Commun 1588

    Google Scholar 

  120. Amabilino DB (2007) Nanofibre whirlpools. Nat Mater 6:924

    CAS  Google Scholar 

  121. Escudero C, Crusats J, Diez-Perez I, El-Hachemi Z, Ribò JM (2006) Folding of 5-phenyl-10,15,20-tris-(4-sulfophenyl)porphyrin. Angew Chem It Ed 45:8032

    CAS  Google Scholar 

  122. El-Hachemi Z, Arteaga O, Canillas A, Crusats J, Escudero C, Kuroda R, Harada T, Rosa M, Ribò JM (2008) On the Mechano-chiral effect of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris-(4-sulfophenyl)porphyrin J-Aggregates. Chem Eur J 14:6438

    CAS  Google Scholar 

  123. Arteaga O, Escudero C, Oncins G, El-Hachemi Z, Llorens J, Crusats J, Canillas A, Ribò JM (2009) Reversible mechanical induction of optical activity in solutions of soft-matter nanophases. Chem Eur J 4:1687

    CAS  Google Scholar 

  124. Spada GP (2008) Alignment by the convective and vortex flow of achiral self-assembled fibers induces strong circular dichroism effects. Angew Chem Int Ed 47:636

    CAS  Google Scholar 

  125. Arteaga O, Canillas A, Crusats J, El-Hachemi Z, Llorens J, Sacristan E, Ribò JM (2010) Emergence of supramolecular chirality by flows. ChemPhysChem 11:3511

    CAS  Google Scholar 

  126. D’Urso A, Randazzo R, Lo Faro L, Purrello R (2010) Vortexes and nanoscale chirality. Angew Chem Int Ed 49:108

    Google Scholar 

  127. D’Urso A, Fragalà ME, Purrello R (2010) From self-assembly to noncovalent synthesis of programmable porphyrins’ arrays in aqueous solution. Chem Commun 48:8165

    Google Scholar 

  128. Sorrenti A, El-Hachemi Z, Crusats J, Ribò JM (2011) Effects of flow-selectivity on self-assembly and auto-organization processes: an example. Chem Commun 47:9551

    Google Scholar 

  129. Sorrenti A, El-Hachemi Z, Arteaga O, Canillas A, Crusats J, Ribò JM (2012) Kinetic control of the supramolecular chirality of porphyrin J-aggregates. Chem Eur J 18:8820

    CAS  Google Scholar 

  130. Zhang L, Liu M (2009) Supramolecular chirality and chirality inversion of tetraphenylsulfonato porphyrin assemblies on optically active polylysine. J Phys Chem B 113:14015

    CAS  Google Scholar 

  131. Wada S, Fujiwara K, Monjushiro H, Watarai H (2007) Optical chirality of protonated tetraphenylporphyrin J-aggregate formed at the liquid-liquid interface in a centrifugal liquid membrane cell. J Phys Condens Matter 19:375105

    Google Scholar 

  132. Micali N, Engelkamp H, van Rhee PG, Christianen PCM, Monsù Scolaro L, Maan JC (2012) Selection of supramolecular chirality by application of rotational and magnetic forces. Nat Chem 4:201

    CAS  Google Scholar 

  133. Kitagawa Y, Sagawa H, Ishi K (2011) Magneto-chiral dichroism of organic compounds. Angew Chem Int Ed 50:9133

    CAS  Google Scholar 

  134. Pasternack RF, Goldsmith JL, Szép S, Gibbs EJ (1998) A spectroscopic and thermodynamic study of porphyrin/DNA Supramolecular assemblies. Biophys J 75:1024

    Google Scholar 

  135. Pasternack RF, Gibbs EJ, Bruzewicz D, Stewart D, Engstrom KS (2002) Kinetic of disassembly of a DNA-bound porphyrin supramolecular array. J Am Chem Soc 124:3533

    CAS  Google Scholar 

  136. Purrello R, Raudino A, Monsù Scolaro L, Micali N, Purrello R (2002) From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J Am Chem Soc 124:894

    Google Scholar 

  137. Balaz M, De Napoli M, Holmes AE, Mammana A, Nakanishi N, Berova N, Purrello RA (2005) Cationic zinc porphyrin as a chiroptical probe for Z-DNA. Angew Chem Int Ed 44:4006

    CAS  Google Scholar 

  138. Onouchi H, Miyagawa T, Morino K, Yashima E (2006) Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. Angew Chem Int Ed 45:2381

    CAS  Google Scholar 

  139. Mammana A, D’Urso A, Lauceri R, Purrello R (2007) Switching off and on the supramolecular chiral memory in porphyrin assemblies. J Am Chem Soc 129:8062

    CAS  Google Scholar 

  140. Matassa R, Carbone M, Lauceri R, Purrello R, Caminiti R (2007) Supramolecular structure of extrinsically chiral porphyrin hetero-assemblies and achiral analogues. Adv Mater 19:3961

    CAS  Google Scholar 

  141. Lauceri R, Fasciglione GF, D’Urso A, Marini S, Purrello R, Coletta M (2008) Kinetic investigation of porphyrin interaction with chiral templates reveals unexpected features of the induction and self-propagation mechanism of chiral memory. J Am Chem Soc 130:10476

    CAS  Google Scholar 

  142. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788

    Google Scholar 

  143. D’Urso A, Nicotra PF, Centonze G, Fragalà ME, Gattuso G, Notti A, Pappalardo A, Pappalardo S, Parisi MF, Purrello R (2012) Induction of chirality in porphyrin-(bis)calixarene assemblies: a mixed covalent-non-covalent vs a fully non-covalent approach. Chem Commun 48:4046

    Google Scholar 

  144. Jiang S, Zhang L, Liu M (2009) Photo-triggered J-aggregation and chiral symmetry breaking of an anionic porphyrin (TPPS) in mixed organic solvent. Chem Commun 6252

    Google Scholar 

  145. Monsù Scolaro L, Romeo A, Castriciano M, De Luca G, Patanè S, Micali N (2003) Porphyrin deposition induced by UV-irradiation. J Am Chem Soc 125:2040

    Google Scholar 

  146. Monsù Scolaro L, Romeo A, Castriciano MA, Micali N (2005) Unusual properties of porphyrin fractal J-aggregates. Chem Commun:3018

    Google Scholar 

  147. Zhang L, Tian Y, Liu M (2011) Ionic liquid induced spontaneous symmetry breaking: emergence of predominant handedness during the self-assembly of tetrakis(4-sulfonatopphenyl)porphyrin(TPPS) with achiral ionic liquid. Phys Chem Chem Phys 13:17205

    CAS  Google Scholar 

  148. Pescitelli G, Di Bari L, Berova N (2011) Conformational aspects in the studies of organic compounds by electronic circular Dichroism. Chem Soc Rev 40:4603

    CAS  Google Scholar 

  149. Balaz M, Bitsch-Jensen K, Mammana A, Ellestad GA, Nakanishi K, Berova N (2007) Porphyrin as spectroscopic sensors for conformational studies of DNA. Pure Appl Chem 79:801

    CAS  Google Scholar 

  150. D’Urso A, Holmes AE, Berova N, Balaz M, Purrello R (2011) Z-DNA recognition in B-Z-B sequences by a cationic zinc porphyrin. Chem Asian J 6:3104

    Google Scholar 

  151. D’Urso A, Mammana A, Balaz M, Holmes AE, Berova N, Lauceri R, Purrello R (2009) Interactions of tetraanionic porphyrin with DNA: from a Z-DNA sensor to a versatile supramolecular device. J Am Chem Soc 131:2046

    Google Scholar 

  152. Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437:1183

    CAS  Google Scholar 

  153. De Luca G, Romeo A, Monsù Scolaro L, Pasternack RF (2010) Conformations of a model protein revealed by an aggregating CuII porphyrin: sensing the difference. Chem Commun 46:389

    Google Scholar 

  154. Occhiuto I, De Luca G, Villari V, Romeo A, Micali N, Pasternack RF, Scolaro LM (2011) Supramolecular chirality transfer to large random aggregates of porphyrins. Chem Commun 47:6045

    CAS  Google Scholar 

  155. Pasternack RF, Bustamante C, Collings PJ, Giannetto A, Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by resonance light-scattering techniques. J Am Chem Soc 115:5393

    CAS  Google Scholar 

  156. Katzenelson O, Hel-Or HZ, Anvir D (1996) Chirality of large random supramolecular structures. Chem Eur J 2:174

    CAS  Google Scholar 

  157. Castriciano MA, Romeo A, De Luca G, Villari V, Scolaro LM, Micali N (2011) Scaling the chirality in porphyrin J-nanoaggregates. J Am Chem Soc 133:765

    CAS  Google Scholar 

  158. Castriciano MA, Romeo A, Zagami R, Micali N, Monsù Scolaro L (2012) Kinetic effects of tartaric acid on the growth of chiral J-aggregates of tetrakis(4-sulfonatophenyl)porphyrin. Chem Commun 48:4874

    Google Scholar 

  159. George SJ, Tomovic Z, Schenning APHJ, Meijer EW (2011) Insight into the chiral induction in supramolecular stacks through preferential chiral solvation. Chem Commun 47:3451, and references therein

    CAS  Google Scholar 

  160. Borovkov VV, Hembury GA, Inoue Y (2003) The origin of solvent-controlled supramolecular chirality switching in a bis(zinc porphyrin) system. Angew Chem Int Ed 42:5310

    CAS  Google Scholar 

  161. Li Y, Wang T, Liu M (2007) Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter 3:1312

    CAS  Google Scholar 

  162. Jintoku H, Takafuji M, Oda R, Ihara H (2012) Enantioselective recognition by a highly ordered porphyrin-assembly on a chiral molecular gel. Chem Commun 48:4881

    CAS  Google Scholar 

  163. Jintoku H, Sagawa T, Sawada T, Takafuji T, Ihara H (2010) Versatile chiroptics of peptide-induced assemblies of metalloporphyrins. Org Biomol Chem 8:1344

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Monti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monti, D. (2013). Recent Advancements in Chiral Porphyrin Self-Assembly. In: Paolesse, R. (eds) Synthesis and Modifications of Porphyrinoids. Topics in Heterocyclic Chemistry, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_110

Download citation

Publish with us

Policies and ethics