Skip to main content

The Importance of Stem Cell Senescence in Regenerative Medicine

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 9

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1288))

Abstract

Mesenchymal stem cells (MSCs) are an interesting tool in regenerative medicine and a unique cell-based therapy to treat aging-associated diseases. Successful MSC therapy needs a large-scale cell culture, and requires a prolonged in vitro cell culture that subsequently leads to cell senescence. Administration of senescent MSCs results in inefficient cell differentiation in the clinical setting. Therefore, it is of utmost importance to enhance our knowledge about the aging process and methods to detect cell senescence in order to overcome this challenge. Numerous studies have addressed senescence in various aspects. Here, we review the characteristics of MSCs, how aging affects their features, mechanisms involved in aging of MSCs, and potential approaches to detect MSC senescence in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-AzaC:

5-azacytidine

AD-MSCs:

adipose-derived MSCs

array-CGH:

array complete genomic hybridization

BMSCs:

bone marrow MSCs

CDKN2B:

cyclin-dependent kinase inhibitor 2B

CFU-F:

colony-forming unit fibroblasts

CNAs:

copy number alterations

DNMT:

DNA methyltransferases

Flow-FISH:

flow fluorescence in situ hybridization

GVHD:

graft-versus-host disease

HATs:

histone acetyltransferase

HDACs:

histone deacetylases

HDMs:

histone demethylases

hMSCS:

human MSCs

HMTs:

histone methyltransferases

hTERC:

telomerase RNA template

hTERT:

catalytic enzyme telomerase reverse transcriptase

ISCT:

international society of cellular therapy

mBMSCs:

mouse BMSCs

MSCs:

mesenchymal stem cells

mTRF:

mean telomere restriction fragment

PARG1:

phosphate-associated RhoGAP protein-tyrosine

PcG:

polycomb-group

PD:

population doubling

SA-DNAm:

senescence-associated DNA-methylation

SA-β-Gal:

senescence-associated beta-galactosidase

siRNA:

small interfering RNA

SNVs:

single nucleotide variations

References

  • Al-Nbaheen M, Ali D, Bouslimi A, Al-Jassir F, Megges M, Prigione A, Adjaye J, Kassem M, Aldahmash A (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev Rep 9(1):32–43

    CAS  PubMed  Google Scholar 

  • Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz M, Ferrero-Gutierrez A, Fernandez-Rodriguez M, Gala J, Otero-Hernandez J (2013) Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc 45(1):434–439

    Google Scholar 

  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33(2):203–207

    CAS  PubMed  Google Scholar 

  • Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47

    CAS  PubMed  Google Scholar 

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28(6):707–715

    CAS  PubMed  Google Scholar 

  • Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682

    CAS  PubMed  Google Scholar 

  • Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG (2007) Human bone marrow–derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67(19):9142–9149

    CAS  PubMed  Google Scholar 

  • Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J (2019) Autofluorescence is a reliable in vitro marker of cellular senescence in human mesenchymal stromal cells. Sci Rep 9(1):2074

    PubMed  PubMed Central  Google Scholar 

  • Bhansali A, Upreti V, Khandelwal N, Marwaha N, Gupta V, Sachdeva N, Sharma R, Saluja K, Dutta P, Walia R (2009) Efficacy of autologous bone marrow–derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18(10):1407–1416

    CAS  PubMed  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6(8):611–622

    CAS  PubMed  Google Scholar 

  • Boehm JS, Hession MT, Bulmer SE, Hahn WC (2005) Transformation of human and murine fibroblasts without viral oncoproteins. Mol Cell Biol 25(15):6464–6474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14. https://doi.org/10.1186/1471-2121-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W (2010) DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9(1):54–63

    CAS  PubMed  Google Scholar 

  • Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294

    CAS  PubMed  Google Scholar 

  • Cai J, Miao X, Li Y, Smith C, Tsang K, Cheng L, Wang Q-f (2014) Whole-genome sequencing identifies genetic variances in culture-expanded human mesenchymal stem cells. Stem Cell Rep 3(2):227–233

    CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    CAS  PubMed  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med 12(1):8

    PubMed  PubMed Central  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21(4):564–579

    CAS  PubMed  Google Scholar 

  • Dariolli R, Bassaneze V, Nakamuta JS, Omae SV, Campos LCG, Krieger JE (2013) Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLoS One 8(7):e67939

    CAS  PubMed  PubMed Central  Google Scholar 

  • David J, Stephanie D, Ying H, Jorge DJJCS (2000) Senescence-associated b-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial. Cell 113:3613–3622

    Google Scholar 

  • Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S (2005) Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J Cell Sci 118(4):743–758

    CAS  PubMed  Google Scholar 

  • Dexheimer V, Mueller S, Braatz F, Richter W (2011) Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age. PLoS One 6(8):e22980

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiGirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275–281

    CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92(20):9363–9367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  PubMed  Google Scholar 

  • Duijvestein M, Vos ACW, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW, Kooy-Winkelaar EM, Koning F, Zwaginga JJ, Fidder HH (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59(12):1662–1669

    PubMed  Google Scholar 

  • Elkhenany H, Amelse L, Caldwell M, Abdelwahed R, Dhar M (2016) Impact of the source and serial passaging of goat mesenchymal stem cells on osteogenic differentiation potential: implications for bone tissue engineering. J Anim Sci Biotechnol 7(1):16

    PubMed  PubMed Central  Google Scholar 

  • Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Goodarzi A, Liastani MG (2017) Percutaneous autologous bone marrow-derived mesenchymal stromal cell implantation is safe for reconstruction of human lower limb long bone atrophic nonunion. Cell J (Yakhteh) 19(1):159

    Google Scholar 

  • Fan M, Chen W, Liu W, Du G-Q, Jiang S-L, Tian W-C, Sun L, Li R-K, Tian H (2010) The effect of age on the efficacy of human mesenchymal stem cell transplantation after a myocardial infarction. Rejuvenation Res 13(4):429–438

    PubMed  Google Scholar 

  • Faustman DL, Davis M (2010) Stem cells in the spleen: therapeutic potential for Sjogren’s syndrome, type I diabetes, and other disorders. Int J Biochem Cell Biol 42(10):1576–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fehrer C, Lepperdinger G (2005) Mesenchymal stem cell aging. Exp Gerontol 40(12):926–930

    CAS  PubMed  Google Scholar 

  • Fernández AF, Bayón GF, Urdinguio RG, Toraño EG, García MG, Carella A, Petrus-Reurer S, Ferrero C, Martinez-Camblor P, Cubillo I, García-castro J (2015) H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells. Genome Res 25(1):27–40

    PubMed  PubMed Central  Google Scholar 

  • Ferro T, Santhagunam A, Madeira C, Salgueiro JB, da Silva CL, Cabral JM (2019) Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissue-derived (biopsy) samples. J Cell Physiol 234(4):3973–3984

    CAS  PubMed  Google Scholar 

  • Fickert S, Schröter-Bobsin U, Groß A-F, Hempel U, Wojciechowski C, Rentsch C, Corbeil D, Günther KP (2011) Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J Bone Miner Metab 29(2):224–235

    PubMed  Google Scholar 

  • Foudah D, Redaelli S, Donzelli E, Bentivegna A, Miloso M, Dalprà L, Tredici G (2009) Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosom Res 17(8):1025–1039

    CAS  Google Scholar 

  • Franzen J, Wagner W, Fernandez-Rebollo E (2016) Epigenetic modifications upon senescence of mesenchymal stem cells. Curr Stem Cell Rep 2(3):248–254

    CAS  Google Scholar 

  • Friedenstein A, Chailakhjan R, Lalykina K (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 3(4):393–403

    CAS  Google Scholar 

  • Friedenstein A, Deriglasova U, Kulagina N, Panasuk A, Rudakowa S, Luria E, Ruadkow I (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2(2):83–92

    CAS  PubMed  Google Scholar 

  • Frippiat C, Chen QM, Zdanov S, Magalhaes J-P, Remacle J, Toussaint O (2001) Subcytotoxic H2O2 stress triggers a release of transforming growth factor-β1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 276(4):2531–2537

    CAS  PubMed  Google Scholar 

  • Gao X, Usas A, Lu A, Tang Y, Wang B, Chen C-W, Li H, Tebbets JC, Cummins JH, Huard J (2013) BMP2 is superior to BMP4 for promoting human muscle-derived stem cell-mediated bone regeneration in a critical-sized calvarial defect model. Cell Transplant 22(12):2393–2408

    PubMed  Google Scholar 

  • Garcia S, Bernad A, Martin M, Cigudosa JC, Garcia-Castro J, De La Fuente R (2010) Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res 316(9):1648–1650

    CAS  PubMed  Google Scholar 

  • Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum 52(1):79–86

    PubMed  Google Scholar 

  • García-Prat L, Sousa-Victor P, Muñoz-Cánoves P (2013) Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 280(17):4051–4062

    PubMed  Google Scholar 

  • Geissler S, Textor M, Kuhnisch J, Konnig D, Klein O, Ode A, Pfitzner T, Adjaye J, Kasper G, Duda GN (2012) Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 7(12):e52700. https://doi.org/10.1371/journal.pone.0052700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25(3):646–654

    CAS  PubMed  Google Scholar 

  • Han J, Mistriotis P, Lei P, Wang D, Liu S, Andreadis ST (2012) Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells 30(12):2746–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37(3):614–636

    CAS  PubMed  Google Scholar 

  • He Q, Au B, Kulkarni M, Shen Y, Lim KJ, Maimaiti J, Wong CK, Luijten MN, Chong HC, Lim EH (2018) Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects. Oncogene 7(8):62

    CAS  Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96(7):1020–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huch M, Boj SF, Clevers H (2013) Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regen Med 8(4):385–387

    CAS  PubMed  Google Scholar 

  • Ikegame Y, Yamashita K, Hayashi S-I, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S (2011) Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13(6):675–685

    CAS  PubMed  Google Scholar 

  • Josse C, Schoemans R, Niessen N-A, Delgaudine M, Hellin A-C, Herens C, Delvenne P, Bours V (2010) Systematic chromosomal aberrations found in murine bone marrow-derived mesenchymal stem cells. Stem Cells Dev 19(8):1167–1173

    CAS  PubMed  Google Scholar 

  • Jung Y, Brack AS (2014) Cellular mechanisms of somatic stem cell aging. Curr Top Dev Biol 107:405–438. Elsevier

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J-W, Lee S, Seo M-S, Park S-B, Kurtz A, Kang S-K, Kang K-SJC, Sciences ML (2010) Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell Mol Life Sci 67(7):1165–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khong D, Li M, Singleton A, Chin L-Y, Mukundan S, Parekkadan B (2018) Orthogonal potency analysis of mesenchymal stromal cell function during ex vivo expansion. Exp Cell Res 362(1):102–110

    CAS  PubMed  Google Scholar 

  • Kim M, Rhee J-K, Choi H, Kwon A, Kim J, Lee GD, Jekarl DW, Lee S, Kim Y, Kim T-M (2017) Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing. Sci Rep 7(1):14508

    PubMed  PubMed Central  Google Scholar 

  • Koudstaal S, Jansen of Lorkeers, Sanne J, Gaetani R, Gho JM, van Slochteren FJ, Sluijter JP, Doevendans PA, Ellison GM, Chamuleau SA (2013) Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med 2(6):434–443

    PubMed  PubMed Central  Google Scholar 

  • Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39(4):678–683

    CAS  PubMed  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60. https://doi.org/10.1186/1471-2121-9-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuniakova M, Oravcova L, Varchulova-Novakova Z, Viglaska D, Danisovic L (2015) Somatic stem cell aging and malignant transformation–impact on therapeutic application. Cell Mol Biol Lett 20(5):743–756

    PubMed  Google Scholar 

  • Ledig S, Tewes A, Hucke J, Römer T, Kapczuk K, Schippert C, Hillemanns P, Wieacker P (2018) Array-comparative genomic hybridization analysis in patients with Müllerian fusion anomalies. Clin Genet 93(3):640–646

    CAS  PubMed  Google Scholar 

  • Lee J-W, Lee S-H, Youn Y-J, Ahn M-S, Kim J-Y, Yoo B-S, Yoon J, Kwon W, Hong I-S, Lee K (2014) A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 29(1):23–31

    PubMed  Google Scholar 

  • Li J, Pei M (2012) Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Eng Part B Rev 18(4):270–287

    CAS  PubMed  Google Scholar 

  • Li Z, Liu C, Xie Z, Song P, Zhao RC, Guo L, Liu Z, Wu Y (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6(6):e20526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Charif N, Mainard D, Bensoussan D, Stoltz J-F, de Isla N (2014) Donor’s age dependent proliferation decrease of human bone marrow mesenchymal stem cells is linked to diminished clonogenicity. Biomed Mater Eng 24(s1):47–52

    CAS  PubMed  Google Scholar 

  • Li C-J, Cheng P, Liang M-K, Chen Y-S, Lu Q, Wang J-Y, Xia Z-Y, Zhou H-D, Cao X, Xie H (2015) MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 125(4):1509–1522

    PubMed  PubMed Central  Google Scholar 

  • Liu L, DiGirolamo CM, Paula AAS, Navarro PAAS, Blasco MA, Keefea DL (2004) Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294(1):1–8

    CAS  PubMed  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    PubMed  PubMed Central  Google Scholar 

  • Maijenburg MW, Kleijer M, Vermeul K, Mul EP, van Alphen FP, van der Schoot CE, Voermans C (2012) The composition of the mesenchymal stromal cell compartment in human bone marrow changes during development and aging. Haematologica 97(2):179–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makhlough A, Shekarchian S, Moghadasali R, Einollahi B, Hosseini SE, Jaroughi N, Bolurieh T, Baharvand H, Aghdami N (2017) Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther 8(1):116

    PubMed  PubMed Central  Google Scholar 

  • MarÄ™dziak M, Marycz K, Tomaszewski KA, Kornicka K, Henry BM (2016) The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int 2016:1–15

    Google Scholar 

  • Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97(4):744–754

    CAS  PubMed  Google Scholar 

  • Martin C, Olmos E, Collignon M-L, De Isla N, Blanchard F, Chevalot I, Marc A, Guedon E (2017) Revisiting MSC expansion from critical quality attributes to critical culture process parameters. Process Biochem 59:231–243

    CAS  Google Scholar 

  • Masthan K, Sankari SL, Babu NA, Gopalakrishnan T (2013) Mystery inside the tooth: the dental pulp stem cells. J Clin Diagn Res 7(5):945–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrazarin S, Oh JE, Chung CL, Chen W, Kim RH, Shi S, Park N-H, Kang MK (2011) Impaired odontogenic differentiation of senescent dental mesenchymal stem cells is associated with loss of Bmi-1 expression. J Endod 37(5):662–666

    PubMed  PubMed Central  Google Scholar 

  • Meza-Zepeda LA, Noer A, Dahl JA, Micci F, Myklebost O, Collas P (2008) High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. J Cell Mol Med 12(2):553–563

    CAS  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2009) Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res Rev 8(2):94–112

    CAS  PubMed  Google Scholar 

  • Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24(4):1095–1103

    PubMed  Google Scholar 

  • Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 82(4):583–590

    CAS  PubMed  Google Scholar 

  • Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C (2008) Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev 17(4):761–774

    CAS  PubMed  Google Scholar 

  • Peng L, Xie D, Lin BL, Liu J, Zhu H, Xie C, Zheng Y, Gao Z (2011) Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short-term and long-term outcomes. Hepatology 54(3):820–828

    PubMed  Google Scholar 

  • Petersson M, Frances D, Niemann C (2013) Lineage tracing of hair follicle stem cells in epidermal whole mounts. In: Skin stem cells. New York, NY: Humana Press, pp 45–60

    Google Scholar 

  • Prasad VK, Lucas KG, Kleiner GI, Talano JAM, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J (2011) Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymalâ„¢) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant 17(4):534–541

    CAS  PubMed  Google Scholar 

  • Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species-and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183

    CAS  PubMed  Google Scholar 

  • Redaelli S, Bentivegna A, Foudah D, Miloso M, Redondo J, Riva G, Baronchelli S, Dalprà L, Tredici G (2012) From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res Ther 3(6):47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sareen N, Sequiera GL, Chaudhary R, Abu-El-Rub E, Chowdhury SR, Sharma V, Surendran A, Moudgil M, Fernyhough P, Ravandi A (2018) Early passaging of mesenchymal stem cells does not instigate significant modifications in their immunological behavior. Stem Cell Res Ther 9(1):121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satija NK, Gurudutta G, Sharma S, Afrin F, Gupta P, Verma YK, Singh VK, Tripathi R (2007) Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 16(1):7–24

    CAS  PubMed  Google Scholar 

  • Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95(6):867–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    CAS  PubMed  Google Scholar 

  • Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R (2013) Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 11(1):146

    CAS  PubMed  PubMed Central  Google Scholar 

  • So A-Y, Jung J-W, Lee S, Kim H-S, Kang K-S (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6(5):e19503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhani A, Khanlarkhani N, Baazm M, Mohammadzadeh F, Najafi A, Mehdinejadiani S, Aval FS (2017) Multipotent stem cell and current application. Acta Med Iran 55:6–23

    PubMed  Google Scholar 

  • Soma T, Kishimoto J, Fisher D (2013) Isolation of mesenchymal stem cells from human dermis. In: Skin stem cells. New York, NY: Humana Press, pp 265–274

    Google Scholar 

  • Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926

    PubMed  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173

    CAS  PubMed  Google Scholar 

  • Thaweesapphithak S, Tantrawatpan C, Kheolamai P, Tantikanlayaporn D, Roytrakul S, Manochantr S (2019) Human serum enhances the proliferative capacity and immunomodulatory property of MSCs derived from human placenta and umbilical cord. Stem Cell Res Ther 10(1):79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379

    CAS  PubMed  Google Scholar 

  • Torsvik A, Rosland GV, Svendsen A, Molven A, Immervoll H, McCormack E, Lonning PE, Primon M, Sobala E, Tonn JC, Goldbrunner R, Schichor C, Mysliwietz J, Lah TT, Motaln H, Knappskog S, Bjerkvig R (2010) Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res 70(15):6393–6396. https://doi.org/10.1158/0008-5472.CAN-10-1305

    Article  CAS  PubMed  Google Scholar 

  • Turinetto V, Vitale E, Giachino C (2016) Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy. Int J Mol Sci 17(7):1164

    PubMed Central  Google Scholar 

  • Uccelli A, Laroni A, Brundin L, Clanet M, Fernandez O, Nabavi SM, Muraro PA, Oliveri RS, Radue EW, Sellner J (2019) MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): a randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials 20(1):263

    PubMed  PubMed Central  Google Scholar 

  • Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205(2):194–201

    CAS  PubMed  Google Scholar 

  • Valyushina M, Buravkova L (2013) Age-related differences in rat multipotent mesenchymal stromal bone marrow cells. Bull Exp Biol Med 155(1):129–133

    CAS  PubMed  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008a) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213. https://doi.org/10.1371/journal.pone.0002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V (2008b) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213

    PubMed  PubMed Central  Google Scholar 

  • Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4(6):e5846. https://doi.org/10.1371/journal.pone.0005846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner W, Bork S, Lepperdinger G, Joussen S, Ma N, Strunk D, Koch C (2010) How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY) 2(4):224–230

    CAS  Google Scholar 

  • Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S (2013) Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop 37(12):2491–2498

    PubMed  PubMed Central  Google Scholar 

  • Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H (+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266(26):17707–17712

    CAS  PubMed  Google Scholar 

  • Yu JM, Wu X, Gimble JM, Guan X, Freitas MA, Bunnell BA (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79. https://doi.org/10.1111/j.1474-9726.2010.00646.x

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Park YS, Kim HS, Kim HY, Jin YM, Jung SC, Ryu KH, Jo I (2014) Characterization of long-term in vitro culture-related alterations of human tonsil-derived mesenchymal stem cells: role for CCN 1 in replicative senescence-associated increase in osteogenic differentiation. J Anat 225(5):510–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaim M, Karaman S, Cetin G, Isik S (2012) Donor age and long-term culture affect differentiation and proliferation of human bone marrow mesenchymal stem cells. Ann Hematol 91(8):1175–1186. https://doi.org/10.1007/s00277-012-1438-x

    Article  PubMed  Google Scholar 

  • Zhang ZX, Guan LX, Zhang K, Wang S, Cao PC, Wang YH, Wang Z, Dai LJ (2007) Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol Int 31(6):645–648

    CAS  PubMed  Google Scholar 

  • Zhang W, Ou G, Hamrick M, Hill W, Borke J, Wenger K, Chutkan N, Yu J, Mi QS, Isales CM, Shi XM (2008) Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells. J Bone Miner Res 23(7):1118–1128. https://doi.org/10.1359/jbmr.080304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang H, Zhang X, Zhu C, Tang X, Yu F, Cai X (2016) Molecular mechanisms of PPAR-γ governing MSC osteogenic and adipogenic differentiation. Curr Stem Cell Res Ther 11(3):255–264

    CAS  PubMed  Google Scholar 

  • Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE (2004) Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 15(8):3709–3718

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samaneh Hosseini or Mohamadreza Baghaban Eslaminejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khademi-Shirvan, M., Ghorbaninejad, M., Hosseini, S., Baghaban Eslaminejad, M. (2020). The Importance of Stem Cell Senescence in Regenerative Medicine. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 9. Advances in Experimental Medicine and Biology(), vol 1288. Springer, Cham. https://doi.org/10.1007/5584_2020_489

Download citation

Publish with us

Policies and ethics