Skip to main content

Sturm’s 1836 Oscillation Results Evolution of the Theory

  • Chapter
Sturm-Liouville Theory

Abstract

We examine how Sturm’s oscillation theorems on comparison, separation, and indexing the number of zeros of eigenfunctions have evolved. It was Bôcher who first put the proofs on a rigorous basis, and major tools of analysis where introduced by Picone, Prüfer, Morse, Reid, and others. Some basic oscillation and disconjugacy results are given for the second-order case. We show how the definitions of oscillation and disconjugacy have more than one interpretation for higher-order equations and systems, but it is the definitions from the calculus of variations that provide the most fruitful concepts; they also have application to the spectral theory of differential equations. The comparison and separation theorems are given for systems, and it is shown how they apply to scalar equations to give a natural extension of Sturm’s second-order case. Finally we return to the second-order case to show how the indexing of zeros of eigenfunctions changes when there is a parameter in the boundary condition or if the weight function changes sign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agarwal, S. Grace and D. O’Regan, Oscillation theory for difference and functional differential equations, Kluwer, Dordrecht, 2000.

    Google Scholar 

  2. _____, Oscillation theory for second-order dynamic equations, Taylor and Francis, London, 2003.

    Google Scholar 

  3. C. Ahlbrandt, Disconjugacy criteria for self-adjoint differential systems, J. Differential Eqs. 6 (1969), 271–295.

    Google Scholar 

  4. _____, Equivalent boundary value problems for self-adjoint differential systems, J. Differential Eqs. 9 (1971), 420–435.

    Google Scholar 

  5. C. Ahlbrandt, D. Hinton and R. Lewis, The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory, J. Math. Anal. Appl. 81 (1981), 234–277.

    Google Scholar 

  6. C. Ahlbrandt and A. Peterson, Discrete Hamiltionian Systems, Kluwer Academic, Dordrecht, 1996.

    Google Scholar 

  7. M. Ashbaugh, R. Brown and D. Hinton, Interpolation inequalities and nonoscillatory differential equations, p. 243–255, International Series of Numerical Mathematics 103, Birkhäiuser, Basel, 1992.

    Google Scholar 

  8. F. Atkinson, Discrete and continuous boundary problems, Academic Press, New York, 1964.

    Google Scholar 

  9. P. Bailey, N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math. Software 27 (2001), 143–192.

    Google Scholar 

  10. J.H. Barrett, Oscillation theory of ordinary linear differential equations, Adv. in Math. 3 (1969), 415–509.

    Google Scholar 

  11. P.R. Beesack, Nonoscillation and disconjugacy in the complex domain, Trans. Amer. Math. Soc. 81 (1956), 211–242.

    Google Scholar 

  12. P. Binding, A hierarchy of Sturm-Liouville problems, Math. Methods in the Appl. Sci. 26 (2003), 349–357.

    Google Scholar 

  13. P. Binding and P. Browne, Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proc. Royal Soc. Edinburgh 127A (1997), 1123–1136.

    Google Scholar 

  14. P. Binding, P. Browne and K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc. 37 (1993), 57–72.

    Google Scholar 

  15. P. Binding and H. Volkmer, Oscillation theory for Sturm-Liouville problems with indefinite coefficients, Proc. Royal Soc. Edinburgh 131A (2001), 989–1002.

    Google Scholar 

  16. G. Birkhoff, Existence and oscillation theorem for a certain boundary value problem, Trans. Amer. Math. Soc. 10 (1909), 259–270.

    MathSciNet  Google Scholar 

  17. M. Bôcher, The theorems of oscillation of Sturm and Klein, Bull. Amer. Math. Soc. 4 (1897–1898), 295–313, 365–376.

    Google Scholar 

  18. _____, Leçons sur les méthodes de Sturm dans la théorie des équations différentielles linéaires, et leurs développements modernes, Gauthier-Villars, Paris, 1917.

    Google Scholar 

  19. O. Bolza, Lectures on the Calculus of Variations, Dover, New York, 1961.

    Google Scholar 

  20. M. Brown and M. Eastham, The Hurwitz theorem for Bessel functions and anti-bound states in spectral theory, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), 2431–2448.

    Google Scholar 

  21. R. Brown, S. Clark and D. Hinton, Some function space inequalities and their application to oscillation and stability problems in differential equations, pp. 19–41, Analysis and Applications, Narosa, New Delhi, 2002.

    Google Scholar 

  22. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar 

  23. W.J. Coles, A simple proof of a well-known oscillation theorem, Proc. Amer. Math. Soc. 19 (1968), 507.

    Google Scholar 

  24. W.A. Coppel, Disconjugacy, Lecture Notes in Mathematics 220, Springer, Berlin, 1971.

    Google Scholar 

  25. A. Dixon, On the series of Sturm and Liouville as derived from a pair of fundamental integral equations instead of a differential equation, Phil. Trans. Royal Soc. London Ser. A 211 (1912), 411–432.

    Google Scholar 

  26. O. Došlý, Constants in the oscillation theory of higher-order Sturm-Liouville differential equations, Elect. J. Diff. Eqs. 2002 (2002), 1–12.

    Google Scholar 

  27. M. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Academic Press, Edinburgh, 1973.

    Google Scholar 

  28. _____, Antibound states and exponentially decaying Sturm Liouville potentials, J. London Math. Soc. (2) 65 (2002), 624–638.

    Google Scholar 

  29. U. Elias, Oscillation Theory of Two-Term Differential Equations, Kluwer, Dordrecht, 1997.

    Google Scholar 

  30. L. Erbe, Q. Kong and S. Ruan, Kamenev type theorems for second-order matrix differential systems, Proc. Amer. Math. Soc. 117 (1993), 957–962.

    Google Scholar 

  31. L. Erbe, Q. Kong and B. Zhang, Oscillation theory for functional differential equations, Monographs in Pure and Applied Mathematics 190, Marcel Dekker, New York, 1995.

    Google Scholar 

  32. N. Everitt, M. Kwong and A. Zettl, Oscillation of eigenfunctions of weighted regular Sturm-Liouville problems, J. London Math. Soc. (2) 27 (1983), 106–120.

    Google Scholar 

  33. W.B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341–352.

    MathSciNet  Google Scholar 

  34. C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Royal Soc. Edinburgh 77A (1977), 293–308.

    Google Scholar 

  35. F. Gesztesy, B. Simon and G. Teschl, Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math. 118 (1996), 571–594.

    Google Scholar 

  36. F. Gesztesy and M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr. 189 (1998), 121–144.

    Google Scholar 

  37. I.M. Glazman, Direct Methods for the Qualitative Spectral Analysis of Singular Differential Operators, Israel Program for Scientific Translations, Jerusalem, 1965.

    Google Scholar 

  38. M. Greguš, Third-Order Linear Differential Equations, Reidel, Dordrecht, 1987.

    Google Scholar 

  39. I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications, Oxford Press, New York, 1991.

    Google Scholar 

  40. G. Halvorsen and A. Mingarelli, Non-oscillation Domains of Differential Equations with Two Parameters, Lecture Notes in Mathematics 1338, Springer, Berlin, 1988.

    Google Scholar 

  41. M. Hanan, Oscillation criteria for third-order differential equations, Pacific J. Math. 11 (1961), 919–944.

    Google Scholar 

  42. B. Harrington, Qualitative and Quantitative Properties of Eigenvalue Problems with Eigenparameter in the Boundary Conditions, M.S. thesis, U. Tennessee, 1988.

    Google Scholar 

  43. P. Hartman, Differential equations with non-oscillatory eigenfunctions, Duke Math. J. 15 (1948), 697–709.

    Google Scholar 

  44. _____, Ordinary Differential Equations, Wiley, New York, 1964.

    Google Scholar 

  45. _____, Comparison theorems for self-adjoint second-order systems and uniqueness of eigenvalues of scalar boundary value problems, pp. 1–22, Contributions to analysis and geometry, Johns Hopkins Univ. Press, Baltimore, 1980.

    Google Scholar 

  46. P. Hartman and A. Wintner, On non-oscillatory linear differential equations with monotone coefficients, Amer. J. Math. 76 (1954), 207–219.

    Google Scholar 

  47. O. Haupt, Untersuchungen über Oszillationstheoreme, Teubner, Leipzig, 1911.

    Google Scholar 

  48. S.W. Hawking and R. Penrose, The singularities of gravity collapse and cosmology, Proc. Roy. Soc. London Ser. A 314 (1970), 529–548.

    Google Scholar 

  49. E. Hille, Oscillation theorems in the complex domain, Trans. Amer. Math. Soc. 23 (1922), 350–385.

    MathSciNet  Google Scholar 

  50. _____, Nonoscillation Theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252.

    Google Scholar 

  51. _____, Lectures on Ordinary Differential Equations, Addison-Wesley, Reading, 1969.

    Google Scholar 

  52. A. Hurwitz Über die Nullstellen der Bessel’schen Funktion, Math. Annalen 33 (1889), 246–266.

    Google Scholar 

  53. E. Ince, Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  54. C.G.J. Jacobi, Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, J. Reine Angew. Math. 17 (1837), 68–82.

    Google Scholar 

  55. I. Kamenev, Integral criterion for oscillations of linear differential equations of second-order, Mat. Zametki 23 (1978), 249–251.

    Google Scholar 

  56. E. Kamke, A new proof of Sturm’s comparison theorem, Amer. Math. Monthly 46 (1939), 417–421.

    Google Scholar 

  57. M. Klaus and J. Shaw, On the eigenvalues of Zakharov-Shabat systems, SIAM J. Math. Analysis 34 (2003), 759–773.

    Google Scholar 

  58. F. Klein, Über Körper, welche von confocalen Flächen zweiten Grades begränzt sind, Math. Ann. 18 (1881), 410–427. In: Felix Klein Gesammelte Abhandlungen, vol II, p. 521–539, Springer, Berlin, 1922.

    Google Scholar 

  59. A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann. 42 (1893), 409–435.

    Google Scholar 

  60. Q. Kong, H. Wu and A. Zettl, Left-definite Sturm-Liouville problems, J. Differential Eqs. 177 (2001), 1–26.

    Google Scholar 

  61. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.

    Google Scholar 

  62. K. Kreith, Oscillation Theory, Lecture Notes in Mathematics 324, Springer, Berlin, 1973.

    Google Scholar 

  63. _____, PDE generalization of the Sturm comparison theorem, Mem. Amer. Math. Soc. 48 (1984), 31–45.

    Google Scholar 

  64. W. Leighton, On the detection of the oscillation of solutions of a second-order linear differential equation, Duke Math. J. 17 (1950), 57–62.

    Google Scholar 

  65. _____, Comparison theorems for linear differential equations of second-order, Proc. Amer. Math. Soc. 13 (1962), 603–610.

    Google Scholar 

  66. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377.

    Google Scholar 

  67. A.J. Levin,A comparison principle for second-order differential equations, Soviet Math. Dokl. 1 (1960), 1313–1316.

    Google Scholar 

  68. _____, Some properties bearing on the oscillation of linear differential equations, Soviet Math. Dokl. 4 (1963), 121–124.

    Google Scholar 

  69. _____, Distribution of the zeros of a linear differential equation, Soviet Math. Dokl. 5 (1964), 818–822.

    Google Scholar 

  70. R. Lewis, The discreteness of the spectrum of self-adjoint, even order, one-term, differential operators, Proc. Amer. Math Soc. 42 (1974), 480–482.

    Google Scholar 

  71. A. Liapunov, Problème Général de la Stabilité du Mouvement, (French translation of a Russian paper dated 1893), Ann. Fac. Sci. Univ. Toulouse 2 (1907), 27–247; reprinted as Ann. Math. Studies 17, Princeton, 1949.

    Google Scholar 

  72. H. Linden, Leighton’s bounds for Sturm-Liouville eigenvalues with eigenparameter in the boundary conditions, J. Math. Anal. Appl. 156 (1991), 444–456.

    Google Scholar 

  73. D. London, On the zeros of w″(z) + p(z)w(z) = 0, Pacific J. Math. 12 (1962), 979–991.

    Google Scholar 

  74. J. Lützen, Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics, Springer, Berlin, 1990.

    Google Scholar 

  75. F. Meng and A. Mingarelli, Oscillation of linear Hamiltonian systems, Proc. Amer. Math. Soc. 131 (2003), 897–904.

    Google Scholar 

  76. A. Mingarelli, A survey of the regular weighted Sturm-Liouville problem — the non-definite case, in International Workshop on Applied Differential Equations, ed. S. Xiao and F. Pu, p. 109–137, World Scientific, Singapore, 1986.

    Google Scholar 

  77. M. Möller, On the unboundedness below of the Sturm-Liouville operator, Proc. Roy. Soc. Edinburgh 129A (1999), 1011–1015.

    Google Scholar 

  78. M. Morse, A generalization of Sturm separation and comparison theorems, Math. Ann. 103 (1930), 52–69.

    Google Scholar 

  79. _____, Variational Analysis: Critical Extremals and Sturmian Extensions, Wiley-Interscience, New York, 1973.

    Google Scholar 

  80. E. Müller-Pfeiffer, Spectral Theory of Ordinary Differential Equations, Ellis Horwood, Chichester, 1981.

    Google Scholar 

  81. Z. Nehari, On the zeros of solutions of second-order linear differential equations, Amer. J. Math. 76 (1954), 689–697.

    Google Scholar 

  82. _____, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. 85 (1957), 428–445.

    Google Scholar 

  83. M. Picone, Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale lineare ordinaria del second’ordine, Ann. Scuola Norm. Pisa 11 (1909), 1–141.

    Google Scholar 

  84. H. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499–518.

    Google Scholar 

  85. J. Pryce, Numerical Solutions of Sturm-Liouville Problems, Oxford University Press, Oxford, 1993.

    Google Scholar 

  86. W.T. Reid, Ordinary Differential Equations, Wiley, New York, 1971.

    Google Scholar 

  87. _____, Riccati Differential Equations, Academic Press, New York, 1972.

    Google Scholar 

  88. _____, Sturmian Theory for Ordinary Differential Equations, Applied Mathematical Sciences 31, Springer, Berlin, 1980.

    Google Scholar 

  89. R. Richardson, Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), 22–34.

    MathSciNet  Google Scholar 

  90. _____, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40 (1918), 283–316.

    Google Scholar 

  91. B. Simon, Resonances in one dimension and Fredholm determinants, J. Funct. Anal. 178 (2000), 396–420.

    Google Scholar 

  92. R. Stafford and J. Heidel, A new comparison theorem for scalar Riccati equations, Bull. Amer. Math. Soc. 80 (1974), 754–757.

    Google Scholar 

  93. R. Sternberg, Variational methods and non-oscillation theorems for systems of differential equations, Duke Math. J. 19 (1952), 311–322.

    Google Scholar 

  94. C. Sturm, Mémoire sur les Équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186.

    Google Scholar 

  95. _____, Mémoire sur une classes d’Équations à différences partielles, J. Math. Pures Appl. 1 (1836), 373–444.

    Google Scholar 

  96. C.A. Swanson, Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York, 1968.

    Google Scholar 

  97. F.J. Tipler, General relativity and conjugate ordinary differential equations, J. Differential Eqs. 30 (1978), 165–174.

    Google Scholar 

  98. H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik, Band 2, 5. Auflage, Vieweg, Braunschweig, 1912.

    Google Scholar 

  99. J. Weidman, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin, 1987.

    Google Scholar 

  100. D. Willett, Classification of second-order linear differential equations with respect to oscillation, Adv. Math. 3 (1969), 594–623.

    Google Scholar 

  101. A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117.

    Google Scholar 

  102. _____, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–380.

    Google Scholar 

  103. Y. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients, vol. I, II, Wiley, New York, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hinton, D. (2005). Sturm’s 1836 Oscillation Results Evolution of the Theory. In: Amrein, W.O., Hinz, A.M., Pearson, D.P. (eds) Sturm-Liouville Theory. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7359-8_1

Download citation

Publish with us

Policies and ethics