Skip to main content

Interactions Between Corticotropin-Releasing Hormone and Serotonin: Implications for the Aetiology and Treatment of Anxiety Disorders

  • Chapter
Book cover Anxiety and Anxiolytic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 169))

Abstract

The amount of evidence for a role of aberrant serotoninergic neurotransmission in the aetiology of anxiety disorders, such as generalised anxiety and panic disorder, has been increasing steadily during the past several years. Although the picture is far from complete yet—partly due to the large number of serotonin (5-HT) receptors and the often-disparate effects of receptor agonists and antagonists in animal models of anxiety—SSRIs and the 5-HT1A agonist buspirone have now earned their place in the treatment of anxiety disorders. However, these drugs show—as they do in depressed patients—a delayed onset of improvement. Therefore, new therapeutical strategies are being explored. Corticotropin-releasing hormone (CRH), which plays a key role in the autonomic, neuroendocrine and behavioural responses to stress, is a strong anxiogenic neuropeptide and a promising candidate for therapeutical intervention in anxiety disorders. The neuroanatomical localisation of CRH, its congeners (the urocortins) and their receptors within the serotoninergic raphé nuclei suggests that interactions between the CRH system and 5-HT may play a role in fear and anxiety. In this chapter, I will discuss studies from my own and other laboratories showing that CRH and the urocortins influence several aspects of serotoninergic neurotransmission, including the firing rate of 5-HT neurones and the release and synthesis of this monoamine. Moreover, the interactions between CRH and 5-HT during psychologically stressful challenges will be discussed. Finally, I will review data showing that long-term alterations in the CRH system lead to aberrant functioning of serotoninergic neurotransmission under basal and/or stressful conditions. From this growing set of data the picture is emerging that the CRH system exerts a vast modulatory influence on 5-HT neurotransmission. An aberrant cross-talk between CRH and 5-HT may be of crucial importance in the neurobiology of anxiety disorders and represents, therefore, a promising goal for therapeutical intervention in these psychiatric diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams JK, Johnson PL, Shekhar A, Lowry CA (2002) Different anxiogenic drugs activate a common, topographically distinct subpopulation of serotonergic neurones in the rat dorsal raphe nucleus. Program No 75.1. 2002 abstract viewer/itinerary planner. Society for Neuroscience, Washington. http://sfn.scholarone.com/itin2002/index.html. Cited 20 December 2004

    Google Scholar 

  • Amat J, Matus-Amat P, Watkins LR, Maier SF (1998a) Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Res 797:12–22

    Article  PubMed  Google Scholar 

  • Amat J, Matus-Amat P, Watkins LR, Maier SF (1998b) Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res 812:113–120

    Article  PubMed  Google Scholar 

  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    Article  PubMed  Google Scholar 

  • Beck SG, Pan YZ, Akanwa AC, Kirby LG (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91:994–1005

    Article  PubMed  Google Scholar 

  • Beckman M, Flachskamm C, Linthorst ACE (2005) Effects of exposure to a predator on behaviour and serotonergic neurotransmission in different brain regions of C57BL/6N mice. Eur J Neurosci in press

    Google Scholar 

  • Belzung C, El Hage W, Moindrot N, Griebel G (2001) Behavioral and neurochemical changes following predatory stress in mice. Neuropharmacology 41:400–408

    Article  PubMed  Google Scholar 

  • Bilang-Bleuel A, Rech J, De Carli S, Holsboer F, Reul JMHM (2002) Forced swimming evokes a biphasic response in CREB phosphorylation in extrahypothalamic limbic and neocortical brain structures in the rat. Eur J Neurosci 15:1048–1060

    Article  PubMed  Google Scholar 

  • Bittencourt JC, Sawchenko PE (2000) Do centrally administered neuropeptides access cognate receptors? An analysis in the central corticotropin-releasing factor system. J Neurosci 20:1142–1156

    PubMed  Google Scholar 

  • Bittencourt JC, Vaughan J, Arias C, Rissman RA, Vale WW, Sawchenko PE (1999) Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J Comp Neurol 415:285–312

    Article  PubMed  Google Scholar 

  • Blanchard DC, Griebel G, Blanchard RJ (2003) The Mouse Defense Test Battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463:97–116

    Article  PubMed  Google Scholar 

  • Boadle-Biber MC (1993) Regulation of serotonin synthesis. Prog Biophys Mol Biol 60:1–15

    Article  PubMed  Google Scholar 

  • Boadle-Biber MC, Corley KC, Graves L, Phan TH, Rosecrans J (1989) Increase in the activity of tryptophan hydroxylase from cortex and midbrain of male Fischer 344 rats in response to acute or repeated sound stress. Brain Res 482:306–316

    Article  PubMed  Google Scholar 

  • Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15:6340–6350

    PubMed  Google Scholar 

  • Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 90:8967–8971

    PubMed  Google Scholar 

  • Corley KC, Phan TH, Daugherty WP, Boadle-Biber MC (2002) Stress-induced activation of median raphe serotonergic neurons in rats is potentiated by the neurotensin antagonist, SR 48692. Neurosci Lett 319:1–4

    Article  PubMed  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64:477–505

    Article  PubMed  Google Scholar 

  • Cummings S, Elde R, Ells J, Lindall A (1983) Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 3:1355–1368

    PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol Scand 62:2–55

    Google Scholar 

  • Daugherty WP, Corley KC, Phan TH, Boadle-Biber MC (2001) Further studies on the activation of rat median raphe serotonergic neurons by inescapable sound stress. Brain Res 923:103–111

    Article  PubMed  Google Scholar 

  • Day HE, Greenwood BN, Hammack SE, Watkins LR, Fleshner M, Maier SF, Campeau S (2004) Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474:364–378

    Article  PubMed  Google Scholar 

  • De Groote L, Penalva RG, Flachkamm C, Linthorst, ACE (2005) Differential monoaminergic, neuroendocrine and behavioural responses after central administration of corticotropin-releasing factor receptor type 1 and 2 agonist. J Neurochem in press

    Google Scholar 

  • Dijkstra I, Tilders FJH, Aguilera G, Kiss A, Rabadandiehl C, Barden N, Karanth S, Holsboer F, Reul JMHM (1998) Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function. J Neurosci 18:3909–3918

    PubMed  Google Scholar 

  • Dilts RP, Boadle-Biber MC (1995) Differential activation of the 5-hydroxytryptamine-containing neurons of the midbrain raphe of the rat in response to randomly presented inescapable sound. Neurosci Lett 199:78–80

    Article  PubMed  Google Scholar 

  • Dunn AJ (1988) Stress-related changes in cerebral catecholamine and indoleamine metabolism: lack of effect of adrenalectomy and corticosterone. J Neurochem 51:406–412

    PubMed  Google Scholar 

  • Dunn AJ, Berridge CW (1990) Physiological and behavioral responses to corticotropin-releasing factor administration—Is CRF a mediator of anxiety or stress responses. Brain Res Brain Res Rev 15:71–100

    Article  PubMed  Google Scholar 

  • Eriksson E, Engberg G, Bing O, Nissbrandt H (1999) Effects of mCPP on the extracellular concentrations of serotonin and dopamine in rat brain. Neuropsychopharmacology 20:287–296

    Article  PubMed  Google Scholar 

  • Fujino K, Yoshitake T, Inoue O, Ibii N, Kehr J, Ishida J, Nohta H, Yamaguchi M (2002) Increased serotonin release in mice frontal cortex and hippocampus induced by acute physiological stressors. Neurosci Lett 320:91–95

    Article  PubMed  Google Scholar 

  • Graeff FG, Guimaraes FS, Deandrade TGCS, Deakin JFW (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  PubMed  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826:35–43

    Article  PubMed  Google Scholar 

  • Hajos-Korcsok E, Robinson DD, Yu JH, Fitch CS, Walker E, Merchant KM (2003) Rapid habituation of hippocampal serotonin and norepinephrine release and anxiety-related behaviors, but not plasma corticosterone levels, to repeated footshock stress in rats. Pharmacol Biochem Behav 74:609–616

    Article  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22:1020–1026

    PubMed  Google Scholar 

  • Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF (2003) Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 23:1019–1025

    PubMed  Google Scholar 

  • Hashimoto S, Inoue T, Koyama T (1999) Effects of conditioned fear stress on serotonin neurotransmission and freezing behavior in rats. Eur J Pharmacol 378:23–30

    Article  PubMed  Google Scholar 

  • Hayley S, Borowski T, Merali Z, Anisman H(2001) Central monoamine activity in genetically distinct strains of mice following a psychogenic stressor: effects of predator exposure. Brain Res 892:293–300

    Article  PubMed  Google Scholar 

  • Heinsbroek RP, van Haaren F, Feenstra MG, Boon P, van de Poll NE (1991) Controllable and uncontrollable footshock and monoaminergic activity in the frontal cortex of male and female rats. Brain Res 551:247–255

    Article  PubMed  Google Scholar 

  • Inoue T, Koyama T, Yamashita I (1993) Effect of conditioned fear stress on serotonin metabolism in the rat brain. Pharmacol Biochem Behav 44:371–374

    Article  PubMed  Google Scholar 

  • Inoue T, Tsuchiya K, Koyama T (1994) Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49:911–920

    Article  PubMed  Google Scholar 

  • Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H (2000) Effect of corticotropin releasing factor receptor 1 antagonist on extracellular norepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex of rats in vivo. Neuropeptides 34:234–239

    Article  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    PubMed  Google Scholar 

  • Kagamiishi Y, Yamamoto T, Watanabe S (2003)Hippocampal serotonergic systemis involved in anxiety-like behavior inducedby corticotropin-releasing factor. Brain Res 991:212–221

    Article  PubMed  Google Scholar 

  • Kanno M, Matsumoto M, Togashi H, Yoshioka M, Mano Y (2003) Effects of repetitive transcranial magnetic stimulation on behavioral and neurochemical changes in rats during an elevated plus-maze test. J Neurol Sci 211:5–14

    PubMed  Google Scholar 

  • Kirby LG, Allen AR, Lucki I (1995) Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 682:189–196

    Article  PubMed  Google Scholar 

  • Kirby LG, Chou-Green JM, Davis K, Lucki I (1997) The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 760:218–230

    Article  PubMed  Google Scholar 

  • Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22:148–162

    Article  PubMed  Google Scholar 

  • Kozicz T, Yanaihara H, Arimura A (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 391:1–10

    Article  PubMed  Google Scholar 

  • Lavicky J, Dunn AJ (1993) Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. J Neurochem 60:602–612

    PubMed  Google Scholar 

  • Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J, Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, Vale WW (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 98:7570–7575

    Article  PubMed  Google Scholar 

  • Li C, Vaughan J, Sawchenko PE, Vale WW (2002) Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci 22:991–1001

    PubMed  Google Scholar 

  • Linthorst ACE, Flachskamm C, Hopkins SJ, Hoadley ME, Labeur MS, Holsboer F, Reul JMHM (1997) Long-term intracerebroventricular infusion of corticotropin-releasing hormone alters neuroendocrine, neurochemical, autonomic, behavioral, and cytokine responses to a systemic inflammatory challenge. J Neurosci 17:4448–4460

    PubMed  Google Scholar 

  • Linthorst ACE, Flachskamm C, Barden N, Holsboer F, Reul JMHM (2000) Glucocorticoid receptor impairment alters CNS responses to a psychological stressor: an in vivo microdialysis study in transgenic mice. Eur J Neurosci 12:283–291

    Article  PubMed  Google Scholar 

  • Linthorst ACE, Flachskamm C, Reul JMHM (2001) Hippocampal serotonin responses to forced swim stress in rats: influence of water temperature. Proceedings of the 31st Annual Meeting of the Society for Neuroscience, San Diego

    Google Scholar 

  • Linthorst ACE, Peñalva RG, Flachskamm C, Holsboer F, Reul JMHM (2002) Forced swim stress activates rat hippocampal serotonergic neurotransmission involving a corticotropin-releasing hormone receptor-dependent mechanism. Eur J Neurosci 16:2441–2452

    Article  PubMed  Google Scholar 

  • Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB, Oltersdorf T (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci U S A 92:836–840

    PubMed  Google Scholar 

  • Lowry CA (2002) Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911–923

    Article  PubMed  Google Scholar 

  • Lowry CA, Rodda JE, Lightman SL, Ingram CD (2000) Corticotropin-releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: evidence for activation of a topographically organized mesolimbocortical serotonergic system. J Neurosci 20:7728–7736

    PubMed  Google Scholar 

  • Lowry CA, Johnson PL, Hathway NJA, Lightman SL (2002) Distribution of corticotropin-releasing factor receptor 1-(CRFR1) and CRFR2-immunoreactivity in limbic and caudal brainstemraphe nuclei. Program No 867.6. 2002 abstract viewer/itinerary planner. Society for Neuroscience, Washington http://sfn.scholarone.com/itin2002/index.html. Cited 20 December 2004

    Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. pp 933–944

    Google Scholar 

  • Mann JJ (1998) The neurobiology of suicide. Nat Med 4:25–30

    Article  PubMed  Google Scholar 

  • Martinez M, Phillips PJ, Herbert J (1998) Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress inmale rats. Eur J Neurosci 10:20–33

    Article  PubMed  Google Scholar 

  • Maswood S, Barter JE, Watkins LR, Maier SF (1998) Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Res 783:115–120

    Article  PubMed  Google Scholar 

  • Matsuo M, Kataoka Y, Mataki S, Kato Y, Oi K (1996) Conflict situation increases serotonin release in rat dorsal hippocampus: In vivo study with microdialysis and Vogel test. Neurosci Lett 215:197–200

    Article  PubMed  Google Scholar 

  • Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244

    Article  PubMed  Google Scholar 

  • Moreau JL, Kilpatrick G, Jenck F (1997) Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8:1697–1701

    PubMed  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    PubMed  Google Scholar 

  • Oshima A, Flachskamm C, Reul JMHM, Holsboer F, Linthorst ACE (2003) Altered serotonergic neurotransmission but normal hypothalamic-pituitary-adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775. Neuropsychopharmacology 28:2148–2159

    PubMed  Google Scholar 

  • Peñalva RG, Flachskamm C, Zimmermann S, Wurst W, Holsboer F, Reul JMHM, Linthorst ACE (2002) Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice. Neuroscience 109:253–266

    Article  PubMed  Google Scholar 

  • Pernar L, Curtis AL, Vale WW, Rivier JE, Valentino RJ (2004) Selective activation of corticotropin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions. J Neurosci 24:1305–1311

    Article  PubMed  Google Scholar 

  • Petty F, Kramer G,Wilson L, Jordan S (1994) In vivo serotonin release and learned helplessness. Psychiatry Res 52:285–293

    Article  PubMed  Google Scholar 

  • Price ML, Lucki I (2001) Regulation of serotonin release in the lateral septum and striatum by corticotropin-releasing factor. J Neurosci 21:2833–2841

    PubMed  Google Scholar 

  • Price ML, Curtis AL, Kirby LG, Valentino RJ, Lucki I (1998) Effects of corticotropin-releasing factor on brain serotonergic activity. Neuropsychopharmacology 18:492–502

    Article  PubMed  Google Scholar 

  • Price ML, Kirby LG, Valentino RJ, Lucki I (2002) Evidence for corticotropin-releasing factor regulation of serotonin in the lateral septum during acute swim stress: adaptation produced by repeated swimming. Psychopharmacology (Berl) 162:406–414

    Article  PubMed  Google Scholar 

  • Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FJH, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    PubMed  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12:2–19

    Article  PubMed  Google Scholar 

  • Reul JMHM, Holsboer F (2002) Corticotropin-releasing hormone receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2:23–33

    PubMed  Google Scholar 

  • Rex A, Marsden CA, Fink H (1993) 5-HT1A receptors and changes in extracellular 5-HT in the guinea-pigprefrontal cortex—involvement inaversivebehaviour. J Psychopharmacol 7:338–345

    Google Scholar 

  • Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE (2001) Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 98:2843–2848

    Article  PubMed  Google Scholar 

  • Roche M, Commons KG, Peoples A, Valentino RJ (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23:970–977

    PubMed  Google Scholar 

  • Rueter LE, Jacobs BL (1996) A microdialysis examination of serotonin release in the rat forebrain induced by behavioral environmental manipulations. Brain Res 739:57–69

    Article  PubMed  Google Scholar 

  • Ruggiero DA, Underwood MD, Rice PM, Mann JJ, Arango V (1999) Corticotropic-releasing hormone and serotonin interact in the human brainstem: behavioral implications. Neuroscience 91:1343–1354

    PubMed  Google Scholar 

  • Sakanaka M, Shibasaki T, Lederis K (1987) Corticotropin releasing factor-like immunoreactivity in the rat brain as revealed by a modified cobalt-glucose oxidase-diaminobenzidine method. J Comp Neurol 260:256–298

    Article  PubMed  Google Scholar 

  • Silveira MC, Sandner G, Graeff FG (1993) Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behav Brain Res 56:115–118

    Article  PubMed  Google Scholar 

  • Singh VB, Hao-Phan T, Corley KC, Boadle-Biber MC (1992) Increase in cortical and midbrain tryptophan hydroxylase activity by intracerebroventricular administration of corticotropin releasing factor: block by adrenalectomy, by RU 38486 and by bilateral lesions to the central nucleus of the amygdala. Neurochem Int 20:81–92

    Article  PubMed  Google Scholar 

  • Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen RP, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF (1998) Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20:1093–1102

    Article  PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW(1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    PubMed  Google Scholar 

  • Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JMHM, Stalla GK, Blanquet V, Steckler T, Holsboer F, Wurst W (1998) Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 19:162–166

    Article  PubMed  Google Scholar 

  • Törk I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600:9–35

    PubMed  Google Scholar 

  • Valdez GR, Inoue K, Koob GF, Rivier J, Vale W, Zorrilla EP (2002) Human urocortin II: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide. Brain Res 943:142–150

    Article  PubMed  Google Scholar 

  • Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF (2003) Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 980:206–212

    Article  PubMed  Google Scholar 

  • Valentino RJ, Liouterman L, Van Bockstaele EJ (2001) Evidence for regional heterogeneity in corticotropin-releasing factor interactions in the dorsal raphe nucleus. J CompNeurol 435:450–463

    Google Scholar 

  • Van Gaalen MM, Reul JMHM, Gesing A, Stenzel-Poore MP, Holsboer F, Steckler T (2002) Mice overexpressing CRH show reduced responsiveness in plasma corticosterone after a 5-HT1A receptor challenge. Genes Brain Behav 1:174–177

    Article  PubMed  Google Scholar 

  • Van Loon GR, Shum A, Ho D (1982) Lack of effect of corticotropin releasing factor on hypothalamic dopamine and serotonin synthesis turnover rates in rats. Peptides 3:799–803

    Article  PubMed  Google Scholar 

  • Van Pett K, Viau V, Bittencourt JC, Chan RKW, Li HY, Arias C, Prins GS, Perrin M, Vale W, Sawchenko PE (2000) Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 428:191–212

    Article  PubMed  Google Scholar 

  • Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale W (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292

    Article  PubMed  Google Scholar 

  • Vetter DE, Li C, Zhao L, Contarino A, Liberman MC, Smith GW, Marchuk Y, Koob GF, Heinemann SF, Vale W, Lee KF (2002) Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet 31:363–369

    PubMed  Google Scholar 

  • Voigt JP, Rex A, Sohr R, Fink H (1999) Hippocampal 5-HT and NE release in the transgenic rat TGR (mREN2) 27 related to behavior on the elevated plus maze. Eur Neuropsychopharmacol 9:279–285

    Article  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hörtnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  PubMed  Google Scholar 

  • Wang X, Su H, Copenhagen LD, Vaishnav S, Pieri F, Shope CD, Brownell WE, De Biasi M, Paylor R, Bradley A (2002) Urocortin-deficient mice display normal stress-induced anxiety behavior and autonomic control but an impaired acoustic startle response. Mol Cell Biol 22:6605–6610

    Article  PubMed  Google Scholar 

  • Wilkinson LS, Humby T, Killcross S, Robbins TW, Everitt BJ (1996) Dissociations in hippocampal 5-hydroxytryptamine release in the rat following pavlovian aversive conditioning to discrete and contextual stimuli. Eur J Neurosci 8:1479–1487

    PubMed  Google Scholar 

  • Wright IK, Upton N, Marsden CA (1992) Effect of established and putative anxiolytics on extracellular 5-HT and 5-HIAA in the ventral hippocampus of rats during behaviour on the elevated X-maze. Psychopharmacology (Berl) 109:338–346

    PubMed  Google Scholar 

  • Yoshioka M, Matsumoto M, Togashi H, Saito H (1995) Effects of conditioned fear stress on 5-HT release in the rat prefrontal cortex. Pharmacol Biochem Behav 51:515–519

    Article  PubMed  Google Scholar 

  • Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F (2000) Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res 34:171–181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linthorst, A. (2005). Interactions Between Corticotropin-Releasing Hormone and Serotonin: Implications for the Aetiology and Treatment of Anxiety Disorders. In: Holsboer, F., Ströhle, A. (eds) Anxiety and Anxiolytic Drugs. Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28082-0_7

Download citation

Publish with us

Policies and ethics