Skip to main content

A closure hypothesis for the hierarchy of equations for turbulent probability distribution functions

  • Conference paper
  • First Online:
Statistical Models and Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 12))

Abstract

The hierarchy of equations for turbulent probability distribution functions is closed by relating the three point distribution function to lower order distribution functions. The theory is applied to isotropic, homogeneous turbulence at large wave number giving a nonlinear integral equation for the correlation function at small separation. The Kolmogorov spectrum is found in the inertial range and the Kolmogorov constant is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • G. K. Batchelor, (1960) The Theory of Homogeneous Turbulence, Cambridge University Press.

    Google Scholar 

  • H. L. Grant, R. W. Stewart and A. Moilliet, (1962) Turbulence spectra from a tidal channel. J. Fluid Mech. 13, 237.

    Google Scholar 

  • J. O. Hinze, (1959) Turbulence, McGraw-Hill.

    Google Scholar 

  • E. Hopf, (1952) Statistical hydromechanics and functional calculus, J. Ratl. Mech. Anal. 1, 87.

    Google Scholar 

  • A. N. Kolmogorov, (1941) Dissipation of energy in locally isotropic turbulence. C. R. Acad. Sci. U.R.S.S. 32, 16.

    Google Scholar 

  • R. H. Kraichnan, (1965) Preliminary calculation of the Kolmogorov turbulence spectrum, Phys. Fluids 8, 995; (1966) Errata 9, 1884.

    Google Scholar 

  • M. J. Lighthill, (1960) Fourier Analysis and Generalized Functions, Cambridge University Press.

    Google Scholar 

  • T. S. Lundgren, (1967) Distribution functions in the statistical theory of turbulence, Phys. Fluids 10, 969.

    Google Scholar 

  • M. Millionshtchikov, (1941) On the theory of homogeneous isotropic turbulence, C. R. Acad. Sci. U.R.S.S. 32, 619.

    Google Scholar 

  • A. S. Monin, (1967) Equations of turbulent motion, P.M.M. 31, 1057.

    Google Scholar 

  • N. Muskhelishvili, (1953) Singular Integral Equations, Noordhoff.

    Google Scholar 

  • Y. Ogura, (1963) A consequence of the zero fourth order cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech. 16, 33.

    Google Scholar 

  • I. Proudman and W. H. Reid, (1954) On the decay of a normally distributed and homogeneous turbulent velocity field, Phil Trans. A., 247, 163.

    Google Scholar 

  • S. A. Rice and P. Gray, (1965) The Statistical Mechanics of Simple Liquids, Interscience.

    Google Scholar 

  • P. G. Saffman, (1968) Lectures on homogeneous turbulence in Topics in Nonlinear Physics, Ed. N. Zabusky, Springer-Verlag.

    Google Scholar 

  • T. Tatsumi, (1957) The theory of decay process of incompressible isotropic turbulence, Proc. Roy. Soc. A, 239, 16.

    Google Scholar 

  • M. VanDyke, (1964) Perturbation Methods in Fluid Mechanics, Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Rosenblatt C. Van Atta

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag

About this paper

Cite this paper

Lundgren, T.S. (1972). A closure hypothesis for the hierarchy of equations for turbulent probability distribution functions. In: Rosenblatt, M., Van Atta, C. (eds) Statistical Models and Turbulence. Lecture Notes in Physics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-05716-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-05716-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05716-1

  • Online ISBN: 978-3-540-37093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics