Skip to main content

Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations

  • Chapter
  • First Online:

Part of the book series: Population Genomics ((POGE))

Abstract

Landscape genomics is a rapidly advancing research field that combines population genomics, landscape ecology, and spatial analytical techniques to explicitly quantify the effects of environmental heterogeneity on neutral and adaptive genetic variation and underlying processes. Landscape genomics has tremendous potential for addressing fundamental and applied research questions in various research fields, including ecology, evolution, and conservation biology. However, the unique combination of different scientific disciplines and analytical approaches also constitute a challenge to most researchers wishing to apply landscape genomics. Here, we present an introductory overview of important concepts and methods used in current landscape genomics. For this, we first define the field and explain basic concepts and methods to capture different hypotheses of landscape influences on neutral genetic variation. Next, we highlight established and emerging genomic tools for quantifying adaptive genetic variation in landscape genomic studies. To illustrate the covered topics and to demonstrate the potential of landscape genomics, we provide empirical examples addressing a variety of research question, i.e., the investigation of evolutionary processes driving population differentiation, the landscape genomics of range expanding species, and landscape genomic patterns in organisms of special interest, including species inhabiting aquatic and terrestrial environments. We conclude by outlining remaining challenges and future research avenues in landscape genomics.

This is a preview of subscription content, log in via an institution.

References

  • Abrahms B, Sawyer SC, Jordan NR, McNutt JW, Wilson AM, Brashares JS. Does wildlife resource selection accurately inform corridor conservation? J Appl Ecol. 2017;54(2):412–22. https://doi.org/10.1111/1365-2664.12714.

    Article  Google Scholar 

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan. 2003;64(4):233–47.

    Google Scholar 

  • Afán I, Chiaradia A, Forero MG, Dann P, Ramírez F. A novel spatio-temporal scale based on ocean currents unravels environmental drivers of reproductive timing in a marine predator. Proc R Soc B. 2015;282(1810):20150721.

    PubMed  PubMed Central  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl. 2008;1:95–111.

    PubMed  PubMed Central  Google Scholar 

  • Alamouti SM, Haridas S, Feau N, Robertson G, Bohlmann J, Breuil C. Comparative genomics of the pine pathogens and beetle symbionts in the genus Grosmannia. Mol Biol Evol. 2014;31(6):1454–74. https://doi.org/10.1093/molbev/msu102.

    Article  CAS  Google Scholar 

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259:660–84.

    Google Scholar 

  • Ally D, Ritland K. A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth Mountain Hemlock (Tsuga mertensiana). J Hered. 2007;98:73–8.

    CAS  PubMed  Google Scholar 

  • Ally D, El-Kassaby Y, Ritland K. Genetic diversity, differentiation and mating system in Mountain Hemlock (Tsuga mertensiana) across British Columbia. For Genet. 2000;7:97–108.

    Google Scholar 

  • Anderson K, Gaston KJ. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front Ecol Environ. 2013;11:138–146.

    Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anselin L. Local Indicators of Spatial Association-LISA. Geogr Anal. 1995;27:93–115.

    Google Scholar 

  • Ashley MV, Abraham ST, Backs JR, Koenig WD. Landscape genetics and population structure in Valley Oak (Quercus lobata Nee). Am J Bot. 2015;102:2124–31.

    CAS  PubMed  Google Scholar 

  • Balkenhol N, Fortin M-J. Basics of study design: sampling landscape heterogeneity and genetic variation for landscape genetic studies. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 58–75.

    Google Scholar 

  • Balkenhol N, Waits LP, Dezzani RJ. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography. 2009;32:818–30.

    Google Scholar 

  • Balkenhol N, Holbrook J, Zager P, Rachael J, Onorate D, DeSimone R, White C, Waits LP. A multi-method approach for analyzing hierarchical genetic structures: a case study with cougars (Puma concolor). Ecography. 2014;37:552–63.

    Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits LP. Introduction to landscape genetics: defining, learning and applying an interdisciplinary field. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016a. p. 1–17.

    Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits LP. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016b.

    Google Scholar 

  • Balkenhol N, Cushman S, Storfer A, Waits LP. Current status, future opportunities and remaining challenges in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016c. p. 247–55.

    Google Scholar 

  • Barbujani G, Sokal RR. Zones of sharp genetic change in Europe are also linguistic boundaries. Proc Natl Acad Sci U S A. 1990;87:1816–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barley AJ, Monnahan PJ, Thomson RC, Grismer LL, Brown RM. Sun skink landscape genomics: assessing the roles of microevolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol Ecol. 2015;24:1696–712.

    PubMed  Google Scholar 

  • Bashalkhanov S, Eckert AJ, Rajora OP. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae). Mol Ecol. 2013;22:5877–89.

    PubMed  Google Scholar 

  • Belanger CL, Jablonski D, Roy K, Berke SK, Krug AZ, Valentine JW. Global environmental predictors of benthic marine biogeographic structure. Proc Natl Acad Sci U S A. 2012;109:14046–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, Rochette R, Bernatchez L. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol. 2016;25:5073–92.

    PubMed  Google Scholar 

  • Benomar L, Lamhamedi MS, Rainville A, Beaulieu J, Bousquet J, Margolis HA. Genetic adaptation vs. ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient. Front Plant Sci. 2016;7:48.

    PubMed  PubMed Central  Google Scholar 

  • Benz RA, Boyce MS, Thurfjell H, Paton DG, Musiani M, Dormann CF, Ciuti S. Dispersal ecology informs design of large-scale wildlife corridors. PLoS One. 2016;11:e0162989. https://doi.org/10.1371/journal.pone.0162989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, Jakobsen KS, Andre C. Adaptation to low salinity promotes genomic divergence in Atlantic cod (Gadus morhua L.). Genome Biol Evol. 2015;7:1644–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biek R, Real LA. The landscape genetics of infectious disease emergence and spread. Mol Ecol. 2010;19:3515–31.

    PubMed  PubMed Central  Google Scholar 

  • Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth E, Cushman S, Murphy M, Waits L, Balkenhol N. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour. 2012;12:822–33.

    PubMed  Google Scholar 

  • Bolnick DI, Otto SP. The magnitude of local adaptation under genotype-dependent dispersal. Ecol Evol. 2013;3:4722–35.

    PubMed  PubMed Central  Google Scholar 

  • Bolnick DI, Snowberg LK, Patenia C, et al. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution. 2009;63:2004–16.

    PubMed  Google Scholar 

  • Borevitz JO, Chory J. Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol. 2004;7:132–6.

    CAS  PubMed  Google Scholar 

  • Bowen BW, Gaither MR, DiBattista JD, Iacchei M, Andrews KR, Grant WS, et al. Comparative phylogeography of the ocean planet. Proc Natl Acad Sci U S A. 2016;113:7962–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradburd GS, Ralph PL, Coop GM. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution. 2013;67:3258–73.

    PubMed  Google Scholar 

  • Bradbury D, Smithson A, Krauss SL. Signatures of diversifying selection at EST-SSR loci and association with climate in natural Eucalyptus populations. Mol Ecol. 2013a;22:5112–29.

    CAS  PubMed  Google Scholar 

  • Bradbury IR, Hubert S, Higgins B, Bowman S, Borza T, Paterson IG, et al. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evol Appl. 2013b;6:450–61.

    PubMed  PubMed Central  Google Scholar 

  • Bragg JG, Supple RL, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytol. 2015;207:953–67.

    PubMed  Google Scholar 

  • Buckley J, Butlin RK, Bridle JR. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change. Mol Ecol. 2012;21:267–80.

    PubMed  Google Scholar 

  • Caldwell IR, Gergel SE. Thresholds in seascape connectivity: influence of mobility, habitat distribution, and current strength on fish movement. Landsc Ecol. 2013;28:1937–48.

    Google Scholar 

  • Calic I, Bussotti F, Martinez-Garcia PJ, Neale DB. Recent landscape genomics studies in forest trees-what can we believe? Tree Genet Genomes. 2016;12:3.

    Google Scholar 

  • Carl G, Kühn I. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Model. 2007;207:159–70.

    Google Scholar 

  • Ceron-Souza I, Bermingham E, McMillan WO, Jones FA. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evol Biol. 2012;12:205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Pesqueira M, Suarez-Montes P, Castillo G, Nunez-Farfan J. Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest. Am J Bot. 2014;101:1092–101.

    PubMed  Google Scholar 

  • Chhatre VE. Population structure, association mapping of economic traits and landscape genomics of east Texas loblolly pine (Pinus taeda L.). PhD thesis, Texas A&M University; 2013. 157 pp.

    Google Scholar 

  • Chhatre VE, Rajora OP. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, eastern white pine (Pinus strobus) from northern Ontario. PLoS One. 2014;9(5):e97291. https://doi.org/10.1371/journal.pone.0097291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatre VE, Byram TD, Neale DB, Wegrzyn JL, Krutovsky KV. Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genet Genomes. 2013;9:1161–78. https://doi.org/10.1007/s11295-013-0624-x.

    Article  Google Scholar 

  • Conover DO, Clarke LM, Munch SB, Wagner GN. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J Fish Biol. 2006;69:21–47.

    Google Scholar 

  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185:1411–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costanza R, D'Arge R, De Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world’s ecosystem services and natural capital. Nature. 1997;387:253–60.

    CAS  Google Scholar 

  • Cox K, Broeck AV, Van Calster H, Mergeay J. Temperature-related natural selection in a wind-pollinated tree across regional and continental scales. Mol Ecol. 2011;20:2724–38.

    CAS  PubMed  Google Scholar 

  • Craft KJ, Ashley MV. Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois. For Ecol Manage. 2007;239:13–20.

    Google Scholar 

  • Crida A, Manel S. WOMBSOFT: a R package that implements the wombling method to identify genetic boundary. Mol Ecol Notes. 2007;7:588–91.

    CAS  Google Scholar 

  • Cuervo-Alarcon LC. Genetic analysis of European beech populations across precipitation gradients: understanding the adaptive potential to climate change. PhD thesis, Georg-August University of Göttingen, Göttingen; 2017. 153 pp.

    Google Scholar 

  • Cushman SA, Lewis JS. Movement behavior explains genetic differentiation in American black bears. Landsc Ecol. 2010;25:1613–25.

    Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat. 2006;168:486–99.

    PubMed  Google Scholar 

  • Cushman SA, Max T, Meneses N, Evans LM, Ferrier S, Honchak B, et al. Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks. Ecol Appl. 2014;24:1000–14.

    PubMed  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, et al. Climate change and forest disturbances. Bioscience. 2001;51:723–34.

    Google Scholar 

  • Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One. 2015;10:e0116528.

    PubMed  PubMed Central  Google Scholar 

  • Davis JM, Stamps JA. The effect of natal experience on habitat preferences. Trends Ecol Evol. 2004;19:411–6.

    PubMed  Google Scholar 

  • De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol. 2014;23:4709–21.

    PubMed  Google Scholar 

  • De Mita S, Thuillet AC, Ahmadi N, Manel S, Ronfort J, Vigouroux Y. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;22:1383–99.

    PubMed  Google Scholar 

  • de Villemereuil P, Gaggiotti OE. A new FST-based method to uncover local adaptation using environmental variables. Methods Ecol Evol. 2015;6:1248–58.

    Google Scholar 

  • DeLong JP, Forbe VE, Galic N, Gibert JP, Laport RG, Phillips JS, Vavra JM. How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes. Ecol Evol. 2016;6:573–81.

    PubMed  PubMed Central  Google Scholar 

  • DiLeo MF, Wagner HH. A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep. 2016;1:115–26.

    Google Scholar 

  • Diniz-Filho JAF, Nabout JC, Bini LM, Soares TN, de Campos Telles MP, de Marco P Jr, Collevatti RG. Niche modelling and landscape genetics of Caryocar brasiliense (“Pequi” tree: Caryocaraceae) in Brazilian Cerrado: an integrative approach for evaluating central-peripheral population patterns. Tree Genet Genomes. 2009;5:617–27.

    Google Scholar 

  • Ducatez S, Crossland M, Shine R. Differences in developmental strategies between long-settled and invasion-front populations of the cane toad in Australia. J Evol Biol. 2016;29:335–43.

    CAS  PubMed  Google Scholar 

  • Dudaniec RY, Tesson SVM. Applying landscape genetics to the microbial world. Mol Ecol. 2016;25:3266–75. https://doi.org/10.1111/mec.13691.

    Article  PubMed  Google Scholar 

  • Dudaniec RY, Rhodes JR, Worthington-Wilmer J, Lyons M, Lee K, McAlpine CA, Carrick FN. Using multi-level models to identify drivers of landscape genetic structure among management areas. Mol Ecol. 2013;22:3752–65.

    PubMed  Google Scholar 

  • Dudaniec RY, Worthington-Wilmer J, Hanson J, Warren M, Bell S, Rhodes JR. Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials. Mol Ecol. 2016;25:470–86. https://doi.org/10.1111/mec.13482.

    Article  PubMed  Google Scholar 

  • Duforet-Frebourg N, Blum MGB. Nonstationary patterns of isolation-by-distance: inferring measures of local genetic differentiation with Bayesian kriging. Evolution. 2014;68:1110–23.

    PubMed  PubMed Central  Google Scholar 

  • Duforet-Frebourg N, Luu K, Laval G, Bazin E, Blum MGB. Detecting genomic signatures of natural selection with principal component analysis: application to the 1000 Genomes data. Mol Biol Evol. 2016;33:1082. https://doi.org/10.1093/molbev/msv334.

    Article  CAS  PubMed  Google Scholar 

  • Dyer RJ. Is there such a thing as landscape genetics? Mol Ecol. 2015a;24:3518–28.

    PubMed  Google Scholar 

  • Dyer RJ. Population graphs and landscape genetics. Annu Rev Ecol Evol Syst. 2015b;46:327–42.

    Google Scholar 

  • Dyer RJ. Landscapes and plant populations genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 183–98.

    Google Scholar 

  • Dyer RJ, Nason JD. Population graphs: the graph theoretic shape of genetic structure. Mol Ecol. 2004;13:1713–27.

    PubMed  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, et al. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics. 2009;182:1289–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol. 2010a;19:3789–805.

    CAS  PubMed  Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics. 2010b;185:969–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert AJ, Maloney PE, Vogler DR, Jensen CE, Mix AD, Neale DB. Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genet Genomes. 2015;11:1–17.

    Google Scholar 

  • Edelaar P, Bolnick DI. Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol. 2012;27:659–65.

    PubMed  Google Scholar 

  • Edelaar P, Siepielski AM, Clobert J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution. 2008;62:2462–72.

    PubMed  Google Scholar 

  • Edelhoff H, Signer J, Balkenhol N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov Ecol. 2016;4:21.

    PubMed  PubMed Central  Google Scholar 

  • Ehrenreich IM, Purugganan MD. The molecular genetic basis of plant adaptation. Am J Bot. 2006;93:953–62.

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engler J, Rödder D, Filz K, Habel J, Balkenhol N. Comparative landscape genetics in three closely related sympatric Hesperid butterflies with diverging ecological traits. PLoS One. 2014;9(9):e106526.

    PubMed  PubMed Central  Google Scholar 

  • Fageria MS, Rajora OP. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol Appl. 2013;6:778–94.

    PubMed  PubMed Central  Google Scholar 

  • Feder JL, Forbes AA. Habitat avoidance and speciation for phytophagous insect specialists. Funct Ecol. 2007;21:585–97.

    Google Scholar 

  • Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, et al. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;22:5594–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modeling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18:1–16.

    PubMed  Google Scholar 

  • Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution. 2013;67:2577–91.

    PubMed  Google Scholar 

  • Foll M, Gaggiotti OA. Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977.

    PubMed  PubMed Central  Google Scholar 

  • Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104–20.

    CAS  PubMed  Google Scholar 

  • Forester BR, Lasky JR, Wagner HH, Urban DL. Using genotype-environment associations to identify multilocus local adaptation. bioRxiv. 2017; 129460. https://doi.org/10.1101/129460.

  • Fotheringham AS, Brunsdon C, Charlton M. Geographically weighted regression: the analysis of spatially varying relationships. West Sussex: Wiley; 2002.

    Google Scholar 

  • Fountain T, Nieminen M, Sirén J, et al. Predictable allele frequency changes due to habitat fragmentation in the Glanville fritillary butterfly. Proc Natl Acad Sci U S A. 2016;113:2678–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • François O, Waits LP. Clustering and assignment methods in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 247–55.

    Google Scholar 

  • Freedman AH, Thomassen HA, Buermann W, Smith TB. Genomic signals of diversification along ecological gradients in a tropical lizard. Mol Ecol. 2010;19:3773–88.

    PubMed  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, Francois O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frichot E, Schoville SD, de Villemereuil P, Gaggiotti OE, François O. Detecting adaptive evolution based on association with ecological gradients: orientation matters! Heredity. 2015;115:22–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fronhofer EA, Altermatt F. Eco-evolutionary feedbacks during experimental range expansions. Nat Commun. 2015;6:6844.

    CAS  PubMed  Google Scholar 

  • Funk WC, Lovich RE, Hohenlohe PA, Hofman CA, Morrison SA, Sillett TS, Ghalambor CK, Maldonado JE, Rick TC, Day MD, Polato NR, Fitzpatrick SW, Coonan TJ, Crooks KR, Dillon A, Garcelon DK, King JL, Boser CL, Gould N, Andelt WF. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol. 2016;25:2176–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gagnaire PA, Broquet T, Aurelle D, Viard F, Souissi A, Bonhomme F, Arnaud-Haond S, Bierne N. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8:769–86.

    PubMed  PubMed Central  Google Scholar 

  • Gaines MS, Diffendorfer JE, Tamarin RH, Whittam TS. The effects of habitat fragmentation on the genetic structure of small mammal population. J Hered. 1997;88:294–304.

    CAS  PubMed  Google Scholar 

  • Gaither MR, Bowen BW, Rocha LA, Briggs JC. Fishes that rule the world: circumtropical distributions revisited. Fish Fish. 2016;17:664–79.

    Google Scholar 

  • Gaston KJ. Geographic range limits: achieving synthesis. Proc R Soc Lond B Bio Sci. 2009;276:1395–406.

    Google Scholar 

  • Gauffre B, Estoup A, Bretangnolle V, Cosson JF. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol. 2008;17:4619–29.

    CAS  PubMed  Google Scholar 

  • Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics. 2015;201:1555–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  • González-Martínez SC, Krutovsky KV, Neale DB. Forest-tree population genomics and adaptive evolution. New Phytol. 2006;170:227–38.

    PubMed  Google Scholar 

  • Gralka M, Stiewe F, Farrell F, Möbius W, Waclaw B, Hallatschek O. Allele surfing promotes microbial adaptation from standing variation. Ecol Lett. 2016;19:889–98.

    PubMed  PubMed Central  Google Scholar 

  • Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol. 2013;4:336–44.

    Google Scholar 

  • Guillot G, Vitalis R, le Rouzic A, Gautier M. Detecting correlation between allele frequencies and environmental variables as a signature of selection. A fast computational approach for genome-wide studies. Spat Stat. 2014;8:145–55.

    Google Scholar 

  • Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–20.

    PubMed  PubMed Central  Google Scholar 

  • Guo B, DeFaveri J, Sotelo G, Nair A, Merilä J. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC Biol. 2015;13:19.

    PubMed  PubMed Central  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv. 2015;1:e1500052.

    PubMed  PubMed Central  Google Scholar 

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperona G, Toomajian C, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334(6052):83–6.

    CAS  PubMed  Google Scholar 

  • Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015;30:161–8.

    PubMed  Google Scholar 

  • Hauser L, Carvalho GR. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 2008;9:333–62.

    Google Scholar 

  • Hedrick PW, Ginevan ME, Ewing EP. Genetic polymorphism in heterogeneous environments. Annu Rev Ecol Syst. 1976;7:1–32.

    Google Scholar 

  • Hemmer-Hansen J, Therkildsen NO, Pujolar JM. Population genomics of marine fishes: next-generation prospects and challenges. Biol Bull. 2014;227:117–32.

    PubMed  Google Scholar 

  • Henriques R, von der Heyden S, Lipinski MR, du Toit N, Kainge P, Bloomer P, Matthee CA. Spatio-temporal genetic structure and the effects of long-term fishing in two partially sympatric offshore demersal fishes. Mol Ecol. 2016;25:5843–61.

    PubMed  Google Scholar 

  • Hitchings SP, Beebee, Trevor JCT. Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity. 1997;79:117–27.

    PubMed  Google Scholar 

  • Hoban S, Bertorelle G, Gaggiotti OE. Computer simulations: tools for population and evolutionary genetics. Nat Rev Genet. 2012;13:110–22.

    CAS  PubMed  Google Scholar 

  • Hoban SM, Hauffe H, Pérez-Espona S, Arntzen J, Bertorelle G, Bryja J, et al. Bringing genetic diversity to the forefront of conservation policy and management. Conserv Genet Resour. 2013;5:593–8.

    Google Scholar 

  • Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188(4):379–97.

    PubMed  PubMed Central  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RJ, Insel P, Crossland JP. A single amino acid mutation contributes to adaptive color pattern in beach mice. Science. 2006;313:101–4.

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P, Borevitz J, Sgrò C. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Change Resp. 2015;2:1. https://doi.org/10.1186/s40665-014-0009-x.

    Article  Google Scholar 

  • Holderegger R, Wagner HH. Landscape genetics. BioScience. 2008;58:199–207.

    Google Scholar 

  • Holderegger R, Kamm U, Gugerli F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol. 2006;21:797–807.

    Google Scholar 

  • Holderegger R, Herrmann D, Poncet B, Gugerli F, Thuiller W, Taberlet P, Gielly L, Rioux D, Brodbeck S, Aubert S, Manel S. Land ahead: using genome scans to identify molecular markers of adaptive relevance. Plant Ecol Divers. 2008;1:273–83.

    Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S. Landscape genetics of plants. Trends Plant Sci. 2010;15:675–83.

    CAS  PubMed  Google Scholar 

  • Holliday JA, Suren H, Aitken SN. Divergent selection and heterogeneous migration rates across the range of Sitka spruce (Picea sitchensis). Proc R Soc Lond B Biol Sci. 2012;279:1675–83.

    Google Scholar 

  • Hu L-J, Uchiyama K, Shen H-L, Ide Y. Multiple-scaled spatial genetic structures of Fraxinus mandshurica over a riparian-mountain landscape in Northeast China. Conserv Genet. 2010;11:77–87.

    Google Scholar 

  • Jaquiery J, Broquet T, Hirzel AH, Yearsley J, Perrin N. Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol. 2011;20:692–705.

    CAS  PubMed  Google Scholar 

  • Johnson JS, Gaddis KD, Cairns DM, Lafon CW, Krutovsky KV. Plant responses to global change: next generation biogeography. Phys Geogr. 2016;37:93–119. https://doi.org/10.1080/02723646.2016.1162597.

    Article  Google Scholar 

  • Johnson JS, Gaddis KD, Cairns DM, Konganti K, Krutovsky KV. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. Am J Bot. 2017a;104(3):439–50. https://doi.org/10.3732/ajb.1600262.

    Article  PubMed  Google Scholar 

  • Johnson JS, Gaddis KD, Cairns DM, Krutovsky KV. Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone. Ecosphere. 2017b;8(1):e01649. https://doi.org/10.1002/ecs2.1649.

    Article  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E. The genomic basis of adaptive evolution in three-spine sticklebacks. Nature. 2012;484:55–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MR, Forester BR, Teufel AI, Adams RV, Anstett DN, Goodrich BA, Landguth EL, Joost S, Manel S. Integrating spatially explicit approaches to detect adaptive loci in a landscape genomics context. Evolution. 2013;67:3455–68.

    CAS  PubMed  Google Scholar 

  • Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.

    CAS  PubMed  Google Scholar 

  • Joost S, Vuilleumier S, Denson JD, Schoville S, Leempoel K, Stucki S, et al. Uncovering the genetic basis of adaptive change: on the intersection of landscape genomics and theoretical population genetics. Mol Ecol. 2013;22:3659–65.

    PubMed  Google Scholar 

  • Kamm U, Rotach P, Gugerli F, Siroky M, Edwards P, Holderegger R. Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity. 2009;103:476–82.

    CAS  PubMed  Google Scholar 

  • Kamm U, Gugerli F, Rotach P, Edwards P, Holderegger R. Open areas in a landscape enhance pollen-mediated gene flow of a tree species: evidence from northern Switzerland. Landsc Ecol. 2010;25:903–11.

    Google Scholar 

  • Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.

    Google Scholar 

  • Keller SR, Levsen N, Olson MS, Tiffin P. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol Biol Evol. 2012;29:3143–52.

    CAS  PubMed  Google Scholar 

  • Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17:523–34.

    CAS  PubMed  Google Scholar 

  • Kelly E, Phillips BL. Targeted gene flow for conservation. Conserv Biol. 2016;30:259–67.

    PubMed  Google Scholar 

  • Keyghobadi N. The genetic implications of habitat fragmentation for animals. Can J Zool. 2007;85:1049–64.

    Google Scholar 

  • Kidd MK, Ritchie MG. Phylogeographic information systems: putting the geography into phylogeography. J Biogeogr. 2006;33:1851–65.

    Google Scholar 

  • Kirkpatrick M, Barton NH. Evolution of a species’ range. Am Nat. 1997;150:1–23.

    CAS  PubMed  Google Scholar 

  • Klopfstein S, Currat M, Excoffier L. The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol. 2006;23:482–90.

    CAS  PubMed  Google Scholar 

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett. 2012;15:378–92.

    PubMed  PubMed Central  Google Scholar 

  • Krutovsky KV, Burczyk J, Chybicki I, Finkeldey R, Pyhäjärvi T, Robledo-Arnuncio JJ. Gene flow, spatial structure, local adaptation and assisted migration in trees. In: Schnell RJ, Priyadarshan PM, editors. Genomics of tree crops. New York: Springer; 2012. p. 71–116. https://doi.org/10.1007/978-1-4614-0920-5_4.

    Chapter  Google Scholar 

  • Kubisch A, Holt RD, Poethke H-J, Fronhofer EA. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. Oikos. 2014;123:5–22.

    Google Scholar 

  • Lancaster LT. Widespread range expansions shape latitudinal variation in insect thermal limits. Nat Clim Chang. 2016;6:618. https://doi.org/10.1038/nclimate2945.

    Article  Google Scholar 

  • Landguth EL, Fedy B, Garey A, Mumma M, Emel S, Oyler-McCance S, et al. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour. 2012;12:276–84.

    Google Scholar 

  • Landguth E, Cushman S, Balkenhol N. Simulation modeling in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 101–13.

    Google Scholar 

  • Landguth EL, Bearlin A, Day CC, Dunham J. CDMetaPOP: an individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics. Methods Ecol Evol. 2017;8:4–11.

    Google Scholar 

  • Lee C-R, Mitchell-Olds T. Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol Ecol. 2011;20:4631–42.

    PubMed  PubMed Central  Google Scholar 

  • Legendre P, Fortin MJ. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour. 2010;10:831–44.

    PubMed  Google Scholar 

  • Legendre P, Legendre LP. Numerical ecology. London: Elsevier; 2012.

    Google Scholar 

  • Legendre P, Borcard D, Roberts DW. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology. 2012;93:1234–40.

    PubMed  Google Scholar 

  • Legendre P, Fortin MJ, Borcard D. Should the Mantel test be used in spatial analysis? Methods Ecol Evol. 2015;6:1239–47.

    Google Scholar 

  • Legrand D, Cote J, Fronhofer EA, Holt RD, Ronce O, Schtickzelle N, Travis JMJ, Clobert J. Eco-evolutionary dynamics in fragmented landscapes. Ecography. 2016. https://doi.org/10.1111/ecog.0253.

  • Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002;17:183–9.

    Google Scholar 

  • Lepais O, Bacles CF. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Mol Ecol. 2014;23:4671–3.

    PubMed  Google Scholar 

  • Lhuillier E, Butaud J-F, Bouvet J-M. Extensive clonality and strong differentiation in the insular pacific tree Santalum insulare: implications for its conservation. Ann Bot. 2006;98:1061–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot. 1995;82:1420–5.

    Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17:142–52.

    CAS  PubMed  Google Scholar 

  • Lu M, Krutovsky KV, Nelson CD, Koralewski TE, Byram TD, Loopstra CA. Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics. 2016;17:730. https://doi.org/10.1186/s12864-016-3081-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu M, Krutovsky KV, Nelson CD, West JB, Reilly NA, Loopstra CA. Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genet Genomes. 2017;13:57. https://doi.org/10.1007/s11295-017-1140-1.

    Article  CAS  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.

    CAS  PubMed  Google Scholar 

  • Manel S, Holderegger R. Ten years of landscape genetics. Trends Ecol Evol. 2013;28:614–21.

    PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.

    Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, et al. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol. 2010;19:3760–72.

    CAS  PubMed  Google Scholar 

  • Manel S, et al. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol. 2012;21:3729–38.

    PubMed  PubMed Central  Google Scholar 

  • Manicacci D, Olivieri I, Perrot V, Atlan A, Gouyon PH, Prosperi JM, Couvet D. Landscape ecology: population genetics at the metapopulation level. Landsc Ecol. 1992;6:147–59.

    Google Scholar 

  • Marko PB, Hart MW. The complex analytical landscape of gene flow inference. Trends Ecol Evol. 2011;26:448–56.

    PubMed  Google Scholar 

  • Martin MA, Mattioni C, Molina JR, Alvarez JB, Cherubini M, Herrera MA, Villani F, Martin LM. Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes. 2012;8:127–36.

    Google Scholar 

  • Mateo-Sanchéz M, Balkenhol N, Cushman S, Pérez T, Domínguez P, Saura S. A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landsc Ecol. 2015;8:1405–20.

    Google Scholar 

  • Mayr E, O’Hara RJ. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution. 1986;40:55–67.

    PubMed  Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hitschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9:356–69.

    CAS  PubMed  Google Scholar 

  • McKown AD, Guy RD, Klapste J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014;201:1263–76.

    CAS  PubMed  Google Scholar 

  • McRae BH. Isolation by resistance. Evolution. 2006;60:1551–61.

    PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology and conservation. Ecology. 2008;10:2712–24.

    Google Scholar 

  • Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl. 2014;7:1–14.

    PubMed  PubMed Central  Google Scholar 

  • Merriam G, Kozakiewicz M, Tsuchiya E, Hawley K. Barriers as boundaries for metapopulations and demes of Peromyscus leucopus in farm landscapes. Landsc Ecol. 1989;2:227–35.

    Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17:240–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monmonier M. Maximum–difference barriers: an alternative numerical regionalization method. Geogr Anal. 1973;3:245–61.

    Google Scholar 

  • Montgelard C, Zenboudji S, Ferchaud A, Arnal V, van Vuuren BJ. Landscape genetics in mammals. Mammalia. 2014;78:139–57.

    Google Scholar 

  • Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950;37:17–23.

    CAS  PubMed  Google Scholar 

  • Morgan SG. Behaviorally mediated larval transport in upwelling systems. Adv Oceanogr. 2014;2014:364214.

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB. Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst. 2000;31:533–63.

    Google Scholar 

  • Morris GP, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci. 2013;110:453–8.

    CAS  PubMed  Google Scholar 

  • Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB. The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol. 2012;21:5530–45.

    CAS  PubMed  Google Scholar 

  • Mosca E, González-Martínez SC, Neale DB. Environmental versus geographical determinants of genetic structure in two subalpine conifers. New Phytol. 2014;201:180–92.

    CAS  PubMed  Google Scholar 

  • Mosca E, Gugerli F, Eckert AJ, Neale DB. Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genet Genomes. 2016;12:9. https://doi.org/10.1007/s11295-015-0964-9.

    Article  Google Scholar 

  • Murphy M, Dyer R, Cushman SA. Graph theory and network models in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 165–80.

    Google Scholar 

  • Namroud M-C, Beaulieu J, Juge N, Laroche J, Bousquet J. Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol. 2008;17:3599–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12:111–22.

    CAS  PubMed  Google Scholar 

  • Nielsen EE, Hemmer-Hansen JA, Larsen PF, Bekkevold D. Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol. 2009;18:3128–50.

    PubMed  Google Scholar 

  • Nosil P. Reproductive isolation caused by visual predation on migrants between divergent environments. Proc R Soc Lond B. 2004;271:1521–8.

    Google Scholar 

  • Nosil P, Vines TH, Funk DJ. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution. 2005;59:705–19.

    PubMed  Google Scholar 

  • Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.

    PubMed  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol Ecol. 2009;18:375–402.

    PubMed  Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP. Impacts of forest fragmentation on the matting system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity. 2006;97:418–26.

    PubMed  Google Scholar 

  • O’Connell LM, Mosseler A, Rajora OP. Extensive long-distance pollen dispersal in a fragmented landscape maintains genetic diversity in white spruce. J Hered. 2007;98:640–5.

    PubMed  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22:5983–99.

    PubMed  Google Scholar 

  • Pamilo P. Genetic variation in heterogeneous environments. Ann Zool Fenn. 1988;25:99–106.

    Google Scholar 

  • Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol. 2012;21:2991–3005.

    CAS  PubMed  Google Scholar 

  • Paris CB, Cherubin LM, Cowen RK. Surfing, spinning, or diving from reef to reef: effects on population connectivity. Mar Ecol Prog Ser. 2007;347:285–300.

    Google Scholar 

  • Parisod C, Holderegger R. Adaptive landscape genetics: pitfalls and benefits. Mol Ecol. 2012;21:3644–6.

    PubMed  Google Scholar 

  • Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.

    PubMed  PubMed Central  Google Scholar 

  • Paul J, Song YS. Blockwise HMM computation for large-scale population genomic inference. Bioinformatics. 2012;28:2008–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pel MA, Foster SJ, Rietman H, van Arkel G, Jones JD, Van Eck HJ, et al. Mapping and cloning of late blight resistance genes from Solanum venturii using an interspecific candidate gene approach. Mol Plant-Microbe Interact. 2009;22:601–15.

    CAS  PubMed  Google Scholar 

  • Pelletier F, Garant D, Hendry AP. Eco-evolutionary dynamics. Philos Trans R Soc B Biol Sci. 2009;364:1483–9.

    CAS  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol. 2005;20:503–10.

    PubMed  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M. The candidate gene approach in plant genetics: a review. Mol Breed. 2001;7:275–91.

    CAS  Google Scholar 

  • Pflüger F, Balkenhol N. A plea for simultaneously considering matrix quality and local environmental conditions when analyzing landscape impacts on effective dispersal. Mol Ecol. 2014;23:2146–56.

    PubMed  Google Scholar 

  • Poelchau MF, Hamrick JL. Differential effects of landscape-level environmental features on genetic structure in three codistributed tree species in Central America. Mol Ecol. 2012;21(20):4970–82.

    PubMed  Google Scholar 

  • Porth I, Klápště J, McKown AD, La Manita J, Guy RD, Ingvrasson PK, et al. Evolutionary quantitative genomics of Populus trichocarpa. PLoS One. 2015;10:e0142864.

    PubMed  PubMed Central  Google Scholar 

  • Primack RB. Essentials of conservation biology. 6th ed. Sunderland: Sinaur Associates; 2014.

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prunier J, Laroche J, Beaulieu J, Bousquet J. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol. 2011;20:1702–16.

    CAS  PubMed  Google Scholar 

  • Prunier JG, Kaufmann B, Fenet S, Picard D, Pompanon F, Joly P, Lena JP. Optimizing the trade-off between spatial and genetic sampling efforts in patchy populations: towards a better assessment of functional connectivity using an individual-based sampling scheme. Mol Ecol. 2013;22:5516–30.

    CAS  PubMed  Google Scholar 

  • Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11(7):e0158691.

    PubMed  PubMed Central  Google Scholar 

  • Rasic G, Filipovic I, Weeks AR, Hoffmann AA. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics. 2014;15:275.

    PubMed  PubMed Central  Google Scholar 

  • Ratnam W, Rajora OP, Finkeldey R, Aravanopoulos F, Bouvet J-M, Vallancourt RE, Kanashiro M. Genetic effects of forest management practices: global synthesis and perspectives. For Ecol Manage. 2014;333:52–65.

    Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.

    PubMed  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol. 2014;29:165–76.

    PubMed  Google Scholar 

  • Riginos C, Crandall ED, Liggins L, Bongaerts P, Treml E. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr Zool. 2016;62:581–601. https://doi.org/10.1093/cz/zow067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts DR, Hamann A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc R Soc B. 2015;282(1804):20142903.

    PubMed  PubMed Central  Google Scholar 

  • Roffler GH, Amish SJ, Smith S, Cosart T, Kardos M, Schwartz MK, Luikart G. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016a;16:1147–64.

    CAS  PubMed  Google Scholar 

  • Roffler GH, Schwartz MK, Pilgrim MK, Talbot SL, Sage GK, Adams LG, Luikart G. Identification of landscape features influencing gene flow: how useful are habitat selection models? Evol Appl. 2016b;9:805–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roschanski AM, Csillery K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, Ulrich KK, Postolache D, Vendramin GG, Fady B. Evidence of divergent selection at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Mol Ecol. 2016;25:776–94.

    Google Scholar 

  • Rosenblum EB, Harmon LJ. “Same same but different”: replicated ecological speciation at white sands. Evolution. 2011;65:946–60.

    PubMed  Google Scholar 

  • Safran RJ, Scordato ESC, Symes LB, Rodríguez RL, Mendelson TC. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda. Trends Ecol Evol. 2013;28:643–50.

    PubMed  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T. Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst. 2007;38:595–619.

    Google Scholar 

  • Schoville SD, Bonin A, François O, Lobreaux S, MeloDelima C, Manel S. Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst. 2012;43:23–43.

    Google Scholar 

  • Schumaker NH. HexSim Version 2.5.7. Corvallis: U.S. Environmental Protection Agency, Environmental Research Laboratory; 2013. http://hexsim.net

    Google Scholar 

  • Schupp EW, Fuentes M. Spatial patterns of seed dispersal and the unification of plant population ecology. Ecoscience. 1995;2:267–75.

    Google Scholar 

  • Schwabl P, Llewellyn MS, Landguth EL, Andersson B, Kitron U, Costales JA, et al. Prediction and prevention of parasitic diseases using a landscape genomics framework. Trends Parasitol. 2017;33(4):264–75.

    PubMed  Google Scholar 

  • Schwartz MK, Luikart G, McKelvey KS, Cushman SA. Landscape genomics: a brief perspective. In: Cushman SA, Huettmann F, editors. Spatial complexity, informatics, and wildlife conservation. Tokyo: Springer; 2009. p. 165–74.

    Google Scholar 

  • Selkoe KA, Toonen RJ. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser. 2011;436:291–305.

    Google Scholar 

  • Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser. 2016a;554:1–19.

    Google Scholar 

  • Selkoe KA, Scribner KT, Galindo HM. Waterscape genetics – applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016b. p. 220–46.

    Google Scholar 

  • Servedio MR. The evolution of premating isolation: local adaptation and natural and sexual selection against hybrids. Evolution. 2004;58:913–24.

    PubMed  Google Scholar 

  • Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution. 2014;68:1–15.

    CAS  PubMed  Google Scholar 

  • Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford M, Brännström I, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    PubMed  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW. A role for ecotones in generating rainforest biodiversity. Science. 1997;276:1855–7.

    CAS  Google Scholar 

  • Smouse PE, Sork VL. Measuring pollen flow in forest trees: an exposition of alternative approaches. For Ecol Manage. 2004;197:21–38.

    Google Scholar 

  • Sodeland M, Jorde PE, Lien S, Jentoft S, Berg PR, Grove H, et al. ‘Islands of divergence’ in the Atlantic cod represent polymorphic chromosomal rearrangements. Genome Biol Evol. 2016;8:1012–22. https://doi.org/10.1093/gbe/evw057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sork V, Smouse P. Genetic analysis of landscape connectivity in tree populations. Landsc Ecol. 2006;21:821–36.

    Google Scholar 

  • Sork VL, Nason J, Campbell DR, Fernandez JF. Landscape approaches to historical and contemporary gene flow in plants. Trends Ecol Evol. 1999;14:219–24.

    CAS  PubMed  Google Scholar 

  • Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, Grivet D. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol. 2010;19:3806–23.

    PubMed  Google Scholar 

  • Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes. 2013;9:901–11.

    Google Scholar 

  • Sork VL, Squire K, Gugger PF, Steele SE, Levy ED, Eckert AJ. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata. Am J Bot. 2016;103:33–46.

    CAS  PubMed  Google Scholar 

  • Spear SF, Balkenhol N, McRae B, Scribner K, Fortin M-J. Modeling resistance surfaces for landscape genetics: considerations for parameterization and analysis. Mol Ecol. 2010;19:3576–91.

    PubMed  Google Scholar 

  • Spear SF, Cushman SA, McRae BM. Resistance surface modeling in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 129–48.

    Google Scholar 

  • Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2008;100:158–70.

    CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, et al. Putting the ‘landscape’ in landscape genetics. Heredity. 2007;98:128–42.

    CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP. Landscape genetics: where are we now? Mol Ecol. 2010;19:3496–514.

    PubMed  Google Scholar 

  • Storfer A, Antolin MF, Manel S, et al. Genomic approaches in landscape genetics. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 249–164.

    Google Scholar 

  • Stucki S, Orozco-terWengel P, Bruford MW, Colli L, Masembe C, Negrini R, Taberlet P, Joost S, The NEXTGEN Consortium. High performance computation of landscape genomic models including local indicators of spatial association. Mol Ecol Resour. 2016; arXiv:1405.7658. https://arxiv.org/abs/1405.7658

  • Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday JA. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16:1136–46.

    CAS  PubMed  Google Scholar 

  • Swaegers J, Mergeay J, Van Geystelen A, Therry L, Larmuseau MHD, Stoks R. Neutral and adaptive genomic signatures of rapid poleward range expansion. Mol Ecol. 2015;24:6163–76. https://doi.org/10.1111/mec.13462.

    CAS  PubMed  Google Scholar 

  • Taylor HR, Soanes K. Breaking out of the echo chamber: missed opportunities for genetics at conservation conferences. Biodivers Conserv. 2016;25:1987–93.

    Google Scholar 

  • Taylor P, Fahrig L, With K. Landscape connectivity: a return to basics. In: Crooks KR, Sanjayan M, editors. Connectivity conservation. Cambridge: Cambridge University Press; 2006. p. 29–43.

    Google Scholar 

  • Travis JMJ, Munkemuller T, Burton OJ, et al. Deleterious mutations can surf to high densities on the wave front of an expanding population. Mol Biol Evol. 2007;24:2334–43.

    CAS  PubMed  Google Scholar 

  • Truong C, Palmé AE, Felber F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: genetic and ecological study in northern Sweden. J Evol Biol. 2007;20:369–80.

    CAS  PubMed  Google Scholar 

  • Tsuda Y, Sawada H, Ohsawa T, Nakao K, Nishikawa H, Ide Y. Landscape genetic structure of Betula maximowicziana in the Chichibu mountain range, central Japan. Tree Genet Genomes. 2010;6:377–87.

    Google Scholar 

  • Turner TL, Hahn MW. Genomic islands of speciation or genomic islands and speciation? Mol Ecol. 2010;19:848–50.

    PubMed  Google Scholar 

  • Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet. 2010;42:260–3.

    CAS  PubMed  Google Scholar 

  • van Strien MJ, Keller D, Holderegger R. A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol. 2012;21:4010–23.

    Google Scholar 

  • Vangestel C, Vazquez-Lobo A, Martinez-Garcia PJ, Calic I, Wegrzyn JL, Neale DB. Patterns of neutral and adaptive genetic diversity across the natural range of sugar pine (Pinus lambertiana Dougl.). Tree Genet Genomes. 2016;12:51.

    Google Scholar 

  • Via S. The ecological genetics of speciation. Am Nat. 2002;159(S3):S1–7.

    PubMed  Google Scholar 

  • von der Heyden S, Lipinski MR, Matthee CA. Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Merluccius capensis and population structuring for mature fish in Merluccius paradoxus. Mol Phylogenet Evol. 2007;42:517–27.

    PubMed  Google Scholar 

  • von der Heyden S, Beger M, Toonen RJ, van Herwerden L, Juinio-Meñez MA, Ravago-Gotanco R, Fauvelot C, Bernardi G. The application of genetics to marine management and conservation: examples from the Indo-Pacific. Bull Mar Sci. 2014;90:123–58.

    Google Scholar 

  • Wagner H, Fortin M-J. A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet. 2013;14:253–61.

    Google Scholar 

  • Wagner HH, Fortin MJ. Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 77–98.

    Google Scholar 

  • Waits LP, Storfer A. Basics of population genetics: quantifying neutral and adaptive genetic variation for landscape genetic studies. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 35–57.

    Google Scholar 

  • Waits LP, Cushman SA, Spear SF. Applications of landscape genetics to connectivity research in terrestrial animals. In: Balkenhol N, Cushman S, Storfer A, Waits L, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016. p. 199–219.

    Google Scholar 

  • Wang IJ, Bradburd GS. Isolation by environment. Mol Ecol. 2014;23:5649–62.

    PubMed  Google Scholar 

  • Wang Y-H, Yang KC, Bridgman CL, Lin LK. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol. 2008;23:989–1000.

    Google Scholar 

  • Wang R, Compton SG, Chen X-Y. Fragmentation can increase spatial genetic structure without decreasing pollen-mediated gene flow in a wind-pollinated tree. Mol Ecol. 2011;20:4421–32.

    PubMed  Google Scholar 

  • Wang R, Compton SG, Shi Y-S, Chen X-Y. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed. Ecol Evol. 2012;2:2250–61.

    PubMed  PubMed Central  Google Scholar 

  • Wang IJ, Glor RE, Losos JB. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett. 2013;16:175–82.

    PubMed  Google Scholar 

  • Wang Z-F, Lian J-Y, Ye W-H, Cao H-L, Zhang Q-M, Wang Z-M. Pollen and seed flow under different predominant winds in wind-pollinated and wind-dispersed species Engelhardia roxburghiana. Tree Genet Genomes. 2016;12:19.

    CAS  Google Scholar 

  • Wee AKS, Takayama K, Asakawa T, Thompson B, Onrizal, Sungkaew S, Tung NX, Nazre M, Soe KK, Tan HTW, Watano Y, Baba S, Kajita T, Webb EL. Oceanic currents, not land masses, maintain the genetic structure of the mangrove Rhizophora mucronata Lam. (Rhizophoraceae) in Southeast Asia. J Biogeogr. 2014;41:954–64.

    Google Scholar 

  • Wenzel MA, Piertney SB. Digging for gold nuggets: uncovering novel candidate genes for variation in gastrointestinal nematode burden in a wild bird species. J Evol Biol. 2015;28:807–25.

    CAS  PubMed  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ. Ocean currents help explain population genetic structure. Proc R Soc B. 2010;277:1685–94.

    PubMed  PubMed Central  Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013;22:2971–85.

    CAS  PubMed  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy VJ, et al. A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet. 2006;7:510–23.

    CAS  PubMed  Google Scholar 

  • Whitlock MC, Lotterhos KE. Reliable detection of loci responsible for local adaptation: inference of a neutral model through trimming the distribution of FST. Am Nat. 2015;186(S1):S24–36.

    PubMed  Google Scholar 

  • Womble W. Differential systematics. Science. 1951;28:315–22.

    Google Scholar 

  • Wright S. Isolation by distance. Genetics. 1943;28:114–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR. Estimating landscape resistance to movement: a review. Landsc Ecol. 2012;27:777–97.

    Google Scholar 

  • Zeller KA, Creech TG, Millette KL, Crowhurst RS, Long RA, Wagner HH, Balkenhol N, Landguth EL. Using simulations to evaluate Mantel-based methods for assessing landscape resistance to gene flow. Ecol Evol. 2016;6:4115–28.

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang L, Liu J, Wu G, Savolainen O. Climatic adaptation and ecological divergence between two closely related pine species in Southeast China. Mol Ecol. 2014;23:3504–22.

    PubMed  Google Scholar 

  • Zinck JWR, Rajora OP. Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: single refugium, multiple routes. BMC Evol Biol. 2016;16:56. https://doi.org/10.1186/s12862-016-0624-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziólkowska E, Ostapowicz K, Radeloff VC, et al. Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landsc Ecol. 2016;31:1863. https://doi.org/10.1007/s10980-016-0368-8.

    Article  Google Scholar 

  • Zulliger D, Schnyder E, Gugerli F. Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in Alpine Brassicaceae species. Mol Ecol. 2013;23:1626–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Balkenhol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balkenhol, N. et al. (2017). Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. In: Rajora, O. (eds) Population Genomics. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2017_2

Download citation

Publish with us

Policies and ethics