Skip to main content

Strategies in Organic Synthesis for Condensed Arenes, Coronene, and Graphene

  • Chapter
  • First Online:
Polyarenes I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 349))

Abstract

Graphene-type structures are without doubt one of the most exciting carbon-based materials known. Although graphene is mostly prepared by physical methods (CVD, exfoliation), organic synthesis represents a powerful alternative to access graphene-type structures in a selective and reproducible manner. Although graphene has been hyped as a “new” material, the resemblence to polycyclic aromatic hydrocarbons (PAHs) offers a long history in organic chemistry on which all new endeavors are built. In this review we demonstrate the state-of-the-art of organic synthetic strategies for the preparation of graphene-type structures on selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss NO, Zhou H, Liao L et al (2012) Graphene: an emerging electronic material. Adv Mater 24:5782–5825. doi:10.1002/adma.201201482

    CAS  Google Scholar 

  2. Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955. doi:10.1002/adma.201202321

    CAS  Google Scholar 

  3. Enoki T, Takai K, Osipov V et al (2009) Nanographene and nanodiamond; new members in the nanocarbon family. Chem Asian J 4:796–804. doi:10.1002/asia.200800485

    CAS  Google Scholar 

  4. Katsnelson MI (2012) Graphene: carbon in two dimensions. Cambridge University Press, Cambridge

    Google Scholar 

  5. Choi W, Jo-won L (eds) (2013) Graphene: synthesis and applications. CRC, Boca Raton

    Google Scholar 

  6. Rao CNR, Subrahmanyam KS, Ramakrishna Matte HSS, Govindaraj A (2011) Graphene: synthesis, functionalization and properties. Mod Phys Lett B 25:427–451. doi:10.1142/S0217984911025961

    CAS  Google Scholar 

  7. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644. doi:10.1039/c0cs00079e

    CAS  Google Scholar 

  8. Gengler RYN, Spyrou K, Rudolf P (2010) A roadmap to high quality chemically prepared graphene. J Phys D Appl Phys 43:374015. doi:10.1088/0022-3727/43/37/374015

    Google Scholar 

  9. Gölzhäuser A (2012) Graphene from molecules. Angew Chem Int Edit 51:10936–10937. doi:10.1002/anie.201205955

    Google Scholar 

  10. Feng X, Feng X, Pisula W et al (2009) Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl Chem 81:2203–2224. doi:10.1351/PAC-CON-09-07-07

    CAS  Google Scholar 

  11. Wu J, Gherghel L, Watson MD et al (2003) From branched polyphenylenes to graphite ribbons. Macromolecules 36:7082–7089. doi:10.1021/ma0257752

    CAS  Google Scholar 

  12. Fetzer JC (1989) Synthesis of large condensed polycyclic aromatic hydrocarbons. A review. Org Prep Proced Int 21:47–65

    CAS  Google Scholar 

  13. Skvarchenko VR (1963) Recent progress in the synthesis of monocyclic and polycyclic aromatic hydrocarbons. Russ Chem Rev 32:571–589

    Google Scholar 

  14. Clar E, Chen L, Zander M et al (2012) From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Edit 51:7640–7654. doi:10.1002/anie.201201084

    Google Scholar 

  15. Mercuri F, Baldoni M, Sgamellotti A (2012) Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures. Nanoscale 4:369. doi:10.1039/c1nr11112d

    CAS  Google Scholar 

  16. Yan X, Li L-S (2011) Solution-chemistry approach to graphene nanostructures. J Mat Chem 21:3295. doi:10.1039/c0jm02827d

    CAS  Google Scholar 

  17. Clar E, Ironside CT, Zander M (1959) 28. The electronic interaction between benzenoid rings in condensed aromatic hydrocarbons. 1: 12-2 : 3–4 : 5–6 : 7–8 : 9–10 : 11-hexabenzocoronene, 1: 2–3 : 4–5 : 6–10 : 11-tetrabenzoanthanthrene, and 4 : 5–6 : 7–11 : 12–13 : 14-tetrabenzoperopyrene. J Chem Soc 142. doi: 10.1039/jr9590000142

  18. Halleux A, Martin RH, King GSD (1958) 129. Syntheses dans la serie des derives polycycliques aromatiques hautement condenses. L’hexabenzo-1,12; 2,3; 4,5; 6,7; 8,9; 10,11-coronene, le tetrabenzo-4,5; 6,7; 11,12; 13,14-peropyrene et le tetrabenzo-1,2; 3,4; 8,9; 10,11-bisanthene. Helv Chim Acta 18:1178

    Google Scholar 

  19. Clar E, Guye-Vuillème JF, McCallum S, Macpherson IA (1963) Annellation effects in the pyrene series and the classification of absorption spectra. Tetrahedron 19:2185–2197

    CAS  Google Scholar 

  20. Clar E, Stephen JF (1965) Synthesis of 1:2, 3:4, 5:6, 7:8, 9:10, 11:12-hexabenzocoronene. Tetrahedron 21:467–470

    CAS  Google Scholar 

  21. Clar E, Mullen A (1971) Benzologues of terrylene. Tetrahedron 27:5239–5245

    CAS  Google Scholar 

  22. Clar E, Zander M (1957) 927. Syntheses of coronene and 1 : 2–7 : 8-dibenzocoronene. J Chem Soc 4616–4619

    Google Scholar 

  23. Hendel W, Khan ZH, Schmidt W (1986) Hexa-peri-benzocoronene, a candidate for the origin of the diffuse interstellar visible absorption-bands. Tetrahedron 42:1127–1134

    CAS  Google Scholar 

  24. Clar E (1948) Synthesis of ovalene. Nature 161:238–239

    CAS  Google Scholar 

  25. Thomas AD, Miller LL (1986) Repetitive Diels–Alder reactions for the growth of linear polyacenequinoid derivatives. J Org Chem 51:4160–4169

    CAS  Google Scholar 

  26. Pascal RA Jr, Van Engen D (1987) The solid state structure of 9,11,20,22-tetraphenyltetrabenzo[a,c,l,n] pentacene-10,21-dione: a longitudinally twisted molecular ribbon. Tetrahedron Lett 28:293–294

    CAS  Google Scholar 

  27. Pellissier H, Santelli M (2003) The use of arynes in organic synthesis. Tetrahedron 59:701–730

    CAS  Google Scholar 

  28. Sanz R (2008) Recent applications of aryne chemistry to organic synthesis. A review. Org Prep Proced Int 40:215–291. doi:10.1080/00304940809458089

    CAS  Google Scholar 

  29. Kitamura T, Fukatsu N, Fujiwara Y (1998) (Phenyl)[3-(trimethylsilyl)-2-naphthyl]iodonium triflate as a new precursor of 2,3-didehydronaphthalene. J Org Chem 63:8579–8581. doi:10.1021/jo9812476

    CAS  Google Scholar 

  30. Ikadai J, Yoshida H, Ohshita J, Kunai A (2005) Facile synthesis of polycyclic aromatic hydrocarbons via a trisaryne equivalent. Chem Lett 34:56–57. doi:10.1246/cl.2005.56

    CAS  Google Scholar 

  31. Müller M, Mauermann Düll H, Wagner M et al (1995) A cycloaddition–cyclodehydrogenation route from stilbenoids to extended aromatic hydrocarbons. Angew Chem Int Ed Engl 34:1583–1586

    Google Scholar 

  32. Müller M, Petersen J, Strohmaier R et al (1996) Polybenzoid C54 hydrocarbons: synthesis and structural characterization in vapor-deposited ordered monolayers. Angew Chem Int Ed Engl 35:886–888

    Google Scholar 

  33. Iyer VS, Yoshimura K, Enkelmann V et al (1998) A soluble C60 graphite segment. Angew Chem Int Ed Engl 37:2696–2699

    CAS  Google Scholar 

  34. Wasserfallen D, Kastler M, Pisula W et al (2006) Suppressing aggregation in a large polycyclic aromatic hydrocarbon. J Am Chem Soc 128:1334–1339. doi:10.1021/ja056782j

    CAS  Google Scholar 

  35. Morgenroth F, Kubel C, Müller M et al (1998) From three-dimensional polyphenylene dendrimers to large graphite subunits. Carbon 36:833–837

    CAS  Google Scholar 

  36. Wu J, Tomović Ž, Enkelmann V, Müllen K (2004) From branched hydrocarbon propellers to C3-symmetric graphite disks. J Org Chem 69:5179–5186. doi:10.1021/jo049452a

    CAS  Google Scholar 

  37. Müller M, Iyer VS, Kübel C et al (1997) Polycyclic aromatic hydrocarbons by cyclodehydrogenation and skeletal rearrangement of oligophenylenes. Angew Chem Int Ed Engl 36:1607–1610

    Google Scholar 

  38. Morgenroth F, Reuther E, Müllen K (1997) Polyphenylene dendrimers: from three-dimensional to two-dimensional structures. Angew Chem Int Ed Engl 36:631–634

    CAS  Google Scholar 

  39. Böhme T, Simpson CD, Müllen K, Rabe JP (2007) Current–voltage characteristics of a homologous series of polycyclic aromatic hydrocarbons. Chem-Eur J 13:7349–7357. doi:10.1002/chem.200601249

    Google Scholar 

  40. Iyer VS, Wehmeier M, Brand JD et al (1997) From hexa-peri-hexabenzocoronene to “superacenes”. Angew Chem Int Ed Engl 36:1604–1607

    CAS  Google Scholar 

  41. Simpson CD, Brand JD, Berresheim AJ et al (2002) Synthesis of a giant 222 carbon graphite sheet. Chemistry 8:1424–1429

    CAS  Google Scholar 

  42. Kastler M, Schmidt J, Pisula W et al (2006) From armchair to zigzag peripheries in nanographenes. J Am Chem Soc 128:9526–9534. doi:10.1021/ja062026h

    CAS  Google Scholar 

  43. Wang Z, Tomović Ž, Kastler M et al (2004) Graphitic molecules with partial “zig/zag” periphery. J Am Chem Soc 126:7794–7795. doi:10.1021/ja048580d

    CAS  Google Scholar 

  44. Dötz F, Brand JD, Ito S et al (2000) Synthesis of large polycyclic aromatic hydrocarbons: variation of size and periphery. J Am Chem Soc 122:7707–7717. doi:10.1021/ja000832x

    Google Scholar 

  45. Yamamoto Y (2005) Recent advances in intramolecular alkyne cyclotrimerization and its applications. Curr Org Chem 9:503–519

    CAS  Google Scholar 

  46. Weiss K, Beernink G, Dötz F et al (1999) Template-mediated synthesis of polycyclic aromatic hydrocarbons: cyclodehydrogenation and planarization of a hexaphenylbenzene derivative at a copper surface. Angew Chem Int Ed Engl 38:3748–3752

    CAS  Google Scholar 

  47. Fechtenkötter A, Saalwächter K, Harbison MA et al (1999) Highly ordered columnar structures from hexa-peri-hexabenzocoronenes—synthesis, X-ray diffraction, and solid-state heteronuclear multiple-quantum NMR investigations. Angew Chem Int Ed Engl 38:3039–3042

    Google Scholar 

  48. Lee M, Kim J-W, Peleshanko S et al (2002) Amphiphilic hairy disks with branched hydrophilic tails and a hexa-peri-hexabenzocoronene core. J Am Chem Soc 124:9121–9128. doi:10.1021/ja017553

    CAS  Google Scholar 

  49. Lambert C, Nöll G (2002) Optically and thermally induced electron transfer pathways in hexakis [4-(N, N-diarylamino) phenyl] benzene derivatives. Chem-Eur J 8:3467–3477

    CAS  Google Scholar 

  50. Wang Z, Dötz F, Enkelmann V, Müllen K (2005) “Double-concave” graphene: permethoxylated hexa-peri-hexabenzocoronene and its cocrystals with hexafluorobenzene and fullerene. Angew Chem Int Ed 44:1247–1250

    CAS  Google Scholar 

  51. Wu J, Watson MD, Müllen K (2003) The versatile synthesis and self-assembly of star-type hexabenzocoronenes. Angew Chem Int Edit 42:5329–5333. doi:10.1002/anie.200352047

    CAS  Google Scholar 

  52. Wu J, Watson MD, Zhang L et al (2004) Hexakis(4-iodophenyl)-peri-hexabenzocoronene – a versatile building block for highly ordered discotic liquid crystalline materials. J Am Chem Soc 126:177–186. doi:10.1021/ja037519q

    CAS  Google Scholar 

  53. Wu J, Li J, Kolb U, Müllen K (2006) A water-soluble hexa-peri-hexabenzocoronene: synthesis, self-assembly and role as template for porous silica with aligned nanochannels. Chem Commun 48–50. doi:10.1039/b511868a

  54. Feng X, Pisula W, Zhi L et al (2008) Controlling the columnar orientation of C3-symmetric “superbenzenes” through alternating polar/apolar substitutents. Angew Chem Int Edit 47:1703–1706. doi:10.1002/anie.200703967

    CAS  Google Scholar 

  55. Feng X, Pisula W, Takase M et al (2008) Synthesis, helical organization, and fibrous formation of C3 symmetric methoxy-substituted discotic hexa-peri-hexabenzocoronene. Chem Mater 20:2872–2874. doi:10.1021/cm800515s

    CAS  Google Scholar 

  56. Peña D, Pérez D, Guitián E, Castedo L (1999) Synthesis of hexabenzotriphenylene and other strained polycyclic aromatic hydrocarbons by palladium-catalyzed cyclotrimerization of arynes. Org Lett 1:1555–1557. doi:10.1021/ol990864t

    Google Scholar 

  57. Romero C, Romero C, Peña D et al (2006) Synthesis of extended triphenylenes by palladium-catalyzed [2+2+2] cycloaddition of triphenylynes. Chem-Eur J 12:5677–5684. doi:10.1002/chem.200600466

    CAS  Google Scholar 

  58. de Meijere A, Stulgies B, Albrecht K et al (2006) New interesting molecular topologies by way of modern cross-coupling reactions. Pure Appl Chem 78:813–830. doi:10.1351/pac200678040813

    Google Scholar 

  59. de Meijere A, Diederich F (eds) (2004) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim

    Google Scholar 

  60. Nishihara Y (ed) (2012) Applied cross-coupling reactions. Springer, Heidelberg

    Google Scholar 

  61. Molnár Á (ed) (2013) Palladium-catalyzed coupling reactions. Wiley-VCH, Weinheim

    Google Scholar 

  62. Wu J (2007) Polycyclic aromatic compounds for organic field-effect transistors: molecular design and syntheses. Curr Organic Chem 11:1220–1240

    CAS  Google Scholar 

  63. Ito K, Suzuki T, Sakamoto Y et al (2003) Oligo(2,6-anthrylene)s: acene-oligomer approach for organic field-effect transistors. Angew Chem Int Edit 42:1159–1162

    CAS  Google Scholar 

  64. Yang X, Don X, Müllen K (2008) Efficient synthesis of symmetrically and unsymmetrically substituted hexaphenylbenzene analogues by Suzuki–Miyaura coupling reactions

    Google Scholar 

  65. Alberico D, Scott ME, Lautens M (2007) Aryl−aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107:174–238. doi:10.1021/cr0509760

    CAS  Google Scholar 

  66. Pascual S, de Mendoza P, Echavarren AM (2007) Palladium catalyzed arylation for the synthesis of polyarenes. Org Biomol Chem 5:2727. doi:10.1039/b707940k

    CAS  Google Scholar 

  67. Arockiam PB, Bruneau C, Dixneuf PH (2012) Ruthenium(II)-catalyzed C–H bond activation and functionalization. Chem Rev 112:5879–5918. doi:10.1021/cr300153j

    CAS  Google Scholar 

  68. Paul S, Jana R, Ray J (2010) Palladium-catalyzed intramolecular C–H activation: a synthetic approach towards polycyclic aromatic hydrocarbons. Synlett 2010:1463–1468. doi:10.1055/s-0029-1220070

    Google Scholar 

  69. Nassar-Hardy L, Deraedt C, Fouquet E, Felpin F-X (2011) A fully palladium-mediated construction of phenanthrenes and naphthoxindoles. Eur J Org Chem 2011:4616–4622. doi:10.1002/ejoc.201100477

    CAS  Google Scholar 

  70. Wegner HA (2012) Fluor als Abgangsgruppe in der organischen Synthese? Nachrichten aus der Chemie 60:880–883

    CAS  Google Scholar 

  71. Allemann O, Allemann O, Duttwyler S et al (2011) Proton-catalyzed, silane-fueled Friedel–Crafts coupling of fluoroarenes. Science 332:574–577. doi:10.1126/science.1202432

    CAS  Google Scholar 

  72. Amsharov KY, Kabdulov MA, Jansen M (2012) Facile bucky–bowl synthesis by regiospecific cove-region closure by HF elimination

    Google Scholar 

  73. Mochida K, Kawasumi K, Segawa Y, Itami K (2011) Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J Am Chem Soc 133:10716–10719. doi:10.1021/ja202975w

    CAS  Google Scholar 

  74. Scheuermann CJ (2010) Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Chem Asian J 5:436–451. doi:10.1002/asia.200900487

    CAS  Google Scholar 

  75. Hassan J, Sévignon M, Gozzi C et al (2002) Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev 102:1359–1470

    CAS  Google Scholar 

  76. Suzuki H, Enya T, Hisamatsu Y (1997) Synthesis and characterization of some nitrobenzanthrones: suspected new mutagens in atmospheric environment. Synthesis 1273–1276

    Google Scholar 

  77. Rickhaus M, Belanger AP, Wegner HA, Scott LT (2010) An oxidation induced by potassium metal. Studies on the anionic cyclodehydrogenation of 1,1'-binaphthyl to perylene. J Org Chem 75:7358–7364. doi:10.1021/jo101635z

    CAS  Google Scholar 

  78. Rempala P, Kroulík J, King BT (2006) Investigation of the mechanism of the intramolecular Scholl reaction of contiguous phenylbenzenes. J Org Chem 71:5067–5081. doi:10.1021/jo0526744

    CAS  Google Scholar 

  79. Sarhan AAO, Bolm C (2009) Iron(III) chloride in oxidative C–C coupling reactions. Chem Soc Rev 38:2730. doi:10.1039/b906026j

    CAS  Google Scholar 

  80. Cataldo F, Ursini O, Angelini G, Iglesias-Groth S (2011) On the way to graphene: the bottom-up approach to very large PAHs using the Scholl reaction. Fuller Nanotub Car N 19:713–725. doi:10.1080/1536383X.2010.494787

    Google Scholar 

  81. Allen MJ, Talyzin AV, Tung VC et al (2011) Coronene fusion by heat treatment: road to nanographenes. J Phys Chem C 115:13207–13214. doi:10.1021/jp2028627

    Google Scholar 

  82. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) Synthesis and Characterization of Quarteranthene: Elucidating the Characteristics of the Edge State of Graphene Nanoribbons at the Molecular Level. J Am Chem Soc 135:1430–1437. doi:10.1021/ja309599m

    CAS  Google Scholar 

  83. Kotha S, Misra S, Halder S (2008) Benzannulation. Tetrahedron 64:10775–10790. doi:10.1016/j.tet.2008.09.004

    CAS  Google Scholar 

  84. Wood CS, Mallory FB (1964) Photochemistry of stilbenes. IV. The preparation of substituted phenanthrenes. J Org Chem 29:3373–3377

    CAS  Google Scholar 

  85. Jørgensen KB (2010) Photochemical oxidative cyclisation of stilbenes and stilbenoids—the Mallory-reaction. Molecules 15:4334–4358. doi:10.3390/molecules15064334

    Google Scholar 

  86. Liu L, Yang B, Katz TJ, Poindexter MK (1991) Improved methodology for photocyclization reactions. J Org Chem 56:3769–3775

    CAS  Google Scholar 

  87. Shen Y, Chen C-F (2012) Helicenes: synthesis and applications. Chem Rev 112:1463–1535. doi:10.1021/cr200087r

    CAS  Google Scholar 

  88. Zhang X, Jiang X, Zhang K et al (2010) Synthesis, self-assembly, and charge transporting property of contorted tetrabenzocoronenes. J Org Chem 75:8069–8077. doi:10.1021/jo101701k

    CAS  Google Scholar 

  89. Liu Z, Zhang X, Larock RC (2005) Synthesis of fused polycyclic aromatics by palladium-catalyzed annulation of arynes using 2-halobiaryls. J Am Chem Soc 127:15716–15717. doi:10.1021/ja055781o

    CAS  Google Scholar 

  90. Fürstner A, Davies PW (2007) Catalytic carbophilic activation: catalysis by platinum and gold π-acids. Angew Chem Int Edit 46:3410–3449. doi:10.1002/anie.200604335

    Google Scholar 

  91. Nakae T, Ohnishi R, Kitahata Y et al (2012) Effective synthesis of diiodinated picene and dibenzo[a, h]anthracene by AuCl-catalyzed double cyclization. Tetrahedron Lett 53:1617–1619. doi:10.1016/j.tetlet.2012.01.071

    CAS  Google Scholar 

  92. Shen H-C, Tang J-M, Chang H-K et al (2005) Short and efficient synthesis of coronene derivatives via ruthenium-catalyzed benzannulation protocol. J Org Chem 70:10113–10116. doi:10.1021/jo0512599

    CAS  Google Scholar 

  93. Xia Y, Liu Z, Xiao Q et al (2012) Rhodium(II)-catalyzed cyclization of bis(N-tosylhydrazone)s: an efficient approach towards polycyclic aromatic compounds. Angew Chem Int Edit 51:5714–5717. doi:10.1002/anie.201201374

    CAS  Google Scholar 

  94. Kanno K-I, Liu Y, Iesato A et al (2005) Chromium-mediated synthesis of polycyclic aromatic compounds from halobiaryls. Org Lett 7:5453–5456. doi:10.1021/ol052214x

    CAS  Google Scholar 

  95. Lin Y-D, Cho C-L, Ko C-W et al (2012) Palladium-catalyzed annulation of 2,2′-diiodobiphenyls with alkynes: synthesis and applications of phenanthrenes. J Org Chem 77:9979–9988. doi:10.1021/jo302013x

    CAS  Google Scholar 

  96. Liu Z, Larock RC (2007) Palladium-catalyzed, sequential, three-component cross-coupling of aryl halides, alkynes, and arynes. Angew Chem Int Edit 46:2535–2538. doi:10.1002/anie.200604969

    CAS  Google Scholar 

  97. Wu Y-T, Huang K-H, Shin C-C, Wu T-C (2008) Palladium-catalyzed formation of highly substituted naphthalenes from arene and alkyne hydrocarbons. Chem-Eur J 14:6697–6703. doi:10.1002/(ISSN)1521-3765

    CAS  Google Scholar 

  98. Fukutani T, Hirano K, Satoh T, Miura M (2009) Synthesis of highly substituted naphthalene and anthracene derivatives by rhodium-catalyzed oxidative coupling of arylboronic acids with alkynes. Org Lett 11:5198–5201. doi:10.1021/ol9021172

    CAS  Google Scholar 

  99. van Otterlo WAL, de Koning CB (2009) Metathesis in the synthesis of aromatic compounds. Chem Rev 109:3743–3782. doi:10.1021/cr900178p

    Google Scholar 

  100. Grubbs RH (2004) Olefin metathesis. Tetrahedron 7117–7140. doi:10.1016/j.tet.2004.05.124

  101. Yoshida K, Toyoshima T, Imamoto T (2007) Efficient synthetic routes to aromatic compounds using ring-closing olefin metathesis followed by dehydration, oxidation, and tautomerization. Chem Commun 3774. doi:10.1039/b705581a

  102. Bonifacio MC, Robertson CR, Jung J-Y, King BT (2005) Polycyclic aromatic hydrocarbons by ring-closing metathesis. J Org Chem 70:8522–8526. doi:10.1021/jo051418o

    CAS  Google Scholar 

  103. Schlüter AD, Sakamoto J (2012) Putting aromatic compounds to work: rational synthesis of organic 2D polymers. Pure Appl Chem 84:861–867. doi:10.1351/PAC-CON-12-01-10

    Google Scholar 

  104. Kissel P, Schlüter AD, Sakamoto J (2009) Rational monomer design towards 2D polymers: synthesis of a macrocycle with three 1,8-anthrylene units. Chem-Eur J 15:8955–8960. doi:10.1002/chem.200900781

    CAS  Google Scholar 

  105. Sakamoto J, van Heijst J, Lukin O, Schlüter AD (2009) Two-dimensional polymers: just a dream of synthetic chemists? Angew Chem Int Edit 48:1030–1069. doi:10.1002/anie.200801863

    CAS  Google Scholar 

  106. Schrettl S, Frauenrath H (2012) Elements for a rational polymer approach towards carbon nanostructures. Angew Chem Int Edit 51:6569–6571. doi:10.1002/anie.201201423

    CAS  Google Scholar 

  107. Schwab MG, Narita A, Hernandez Y et al (2012) Structurally defined graphene nanoribbons with high lateral extension. J Am Chem Soc 134:18169–18172. doi:10.1021/ja307697j

    CAS  Google Scholar 

  108. Yang X, Dou X, Rouhanipour A et al (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217. doi:10.1021/ja710234t

    CAS  Google Scholar 

  109. Eliseeva MN, Scott LT (2012) Pushing the Ir-catalyzed C–H polyborylation of aromatic compounds to maximum capacity by exploiting reversibility. J Am Chem Soc 134:15169–15172. doi:10.1021/ja307547j

    CAS  Google Scholar 

  110. Fort EH, Scott LT (2011) Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels–Alder cycloaddition/rearomatization growth strategy. J Mater Chem 21:1373. doi:10.1039/c0jm02517h

    Google Scholar 

  111. Fort EH, Scott LT (2010) One-step conversion of aromatic hydrocarbon bay regions into unsubstituted benzene rings: a reagent for the low-temperature, metal-free growth of single-chirality carbon nanotubes. Angew Chem Int Edit 49:6626–6628. doi:10.1002/anie.201002859

    CAS  Google Scholar 

  112. Fort EH, Scott LT (2011) Gas-phase Diels–Alder cycloaddition of benzyne to an aromatic hydrocarbon bay region: groundwork for the selective solvent-free growth of armchair carbon nanotubes. Tetrahedron Lett 52:2051–2053. doi:10.1016/j.tetlet.2010.10.033

    CAS  Google Scholar 

  113. Li J, Jiao C, Huang K-W, Wu J (2011) Lateral extension of π conjugation along the bay regions of bisanthene through a Diels–Alder cycloaddition reaction. Chem-Eur J 17:14672–14680. doi:10.1002/chem.201102120

    CAS  Google Scholar 

  114. Méndez J, López MF, Martín-Gago JA (2011) On-surface synthesis of cyclic organic molecules. Chem Soc Rev 40:4578. doi:10.1039/c0cs00161a

    Google Scholar 

  115. Beernink G, Gunia M, Dötz F, Öström H, Weiss K, Müllen K, Wöll C (2001) Synthesis of polycyclic aromatic hydrocarbons and graphite islands via surface-induced reaction of small molecules. Chemphyschem 2:317–320. doi:10.1002/1439-7641

    CAS  Google Scholar 

  116. Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. doi:10.1038/nature09211

    CAS  Google Scholar 

  117. Blankenburg S, Cai J, Ruffieux P, Jaafar R et al (2012) Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6:2020–2025. doi:10.1021/nn203129a

    CAS  Google Scholar 

  118. Gille M, Viertel A, Weidner S, Hecht S (2013) Modular synthesis of monomers for on-surface polymerization to graphene architectures. Synlett 24:259–263. doi:10.1055/s-0032-1317959

    CAS  Google Scholar 

  119. Wan X, Chen K, Liu D et al (2012) High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chem Mater 24:3906–3915. doi:10.1021/cm301993z

    CAS  Google Scholar 

Download references

Acknowledgment

AFS is grateful for financial support by the COST action MP0901 “Designing novel materials for nanodevices: from theory to practice” and the Schweizer Bundesministerium für Bildung und Forschung. The authors thank Thomas Eaton, University of Basel, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann A. Wegner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tran-Van, AF., Wegner, H.A. (2013). Strategies in Organic Synthesis for Condensed Arenes, Coronene, and Graphene. In: Siegel, J., Wu, YT. (eds) Polyarenes I. Topics in Current Chemistry, vol 349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_465

Download citation

Publish with us

Policies and ethics