Skip to main content

Small Heat-Shock Proteins: Paramedics of the Cell

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 328))

Abstract

The small heat-shock proteins (sHSPs) comprise a family of molecular chaperones which are widespread but poorly understood. Despite considerable effort, comparatively few high-resolution structures have been determined for the sHSPs, a likely consequence of their tendency to populate ensembles of inter-converting conformational and oligomeric states at equilibrium. This dynamic structure appears to underpin the sHSPs’ ability to bind and sequester target proteins rapidly, and renders them the first line of defence against protein aggregation during disease and cellular stress. Here we describe recent studies on the sHSPs, with a particular focus on those which have provided insight into the structure and dynamics of these proteins. The combined literature reveals a picture of a remarkable family of molecular chaperones whose thermodynamic and kinetic properties are exquisitely balanced to allow functional regulation by subtle changes in cellular conditions.

Gillian R. Hilton, Hadi Lioe and Florian Stengel contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Af :

Archaeoglobus fulgidus

At :

Arabidopsis thaliana

Bt :

Bos taurus (cow)

Dr :

Danio rerio (zebrafish)

E. coli :

Escherichia coli

EM:

Electron microscopy

EPR:

Electron paramagnetic resonance spectroscopy

Hs :

Homo sapiens (human)

IM:

Ion mobility

Mj :

Methanocaldococcus jannaschii

MS:

Mass spectrometry

Mt :

Mycobacterium tuberculosis

nES:

Nanoelectrospray

NMR:

Nuclear magnetic resonance spectroscopy

Ps :

Pisum sativum (pea)

Rn :

Rattus norvegicus (brown rat)

Sc :

Saccharomyces cerevisiae (bakers’ yeast)

sHSP:

Small heat shock protein

Ta :

Triticum aestivum (wheat)

Tsp :

Taenia saginata (beef tapeworm)

Xa :

Xanthomonas axoponidis

References

  1. Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93 (table of contents)

    Article  CAS  Google Scholar 

  2. Kriehuber T et al (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24(10):3633–3642

    Article  CAS  Google Scholar 

  3. Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 13(2):127–142

    Article  CAS  Google Scholar 

  4. Kappe G et al (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8(1):53–61

    Article  CAS  Google Scholar 

  5. Nakamoto H, Vigh L (2007) The small heat shock proteins and their clients. Cell Mol Life Sci 64(3):294–306

    Article  CAS  Google Scholar 

  6. Haslbeck M et al (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12(10):842–846

    Article  CAS  Google Scholar 

  7. Basha E, O'Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117

    Google Scholar 

  8. Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60:321–347

    Article  CAS  Google Scholar 

  9. McHaourab HS, Godar JA, Stewart PL (2009) Structure and mechanism of protein stability sensors: chaperone activity of small heat shock proteins. Biochemistry 48(18):3828–3837

    Article  CAS  Google Scholar 

  10. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  Google Scholar 

  11. Balch WE et al (2008) Adapting proteostasis for disease intervention. Science 319(5865):916–919

    Article  CAS  Google Scholar 

  12. Baldwin AJ et al (2011) Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc 144(36):14160–14163

    Article  CAS  Google Scholar 

  13. Olzscha H et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78

    Article  CAS  Google Scholar 

  14. Powers ET et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  Google Scholar 

  15. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  16. Beck M et al (2009) Visual proteomics of the human pathogen Leptospira interrogans. Nat Methods 6(11):817–823

    Article  CAS  Google Scholar 

  17. Malmstrom J et al (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460(7256):762–765

    Article  CAS  Google Scholar 

  18. Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66(1):62–81

    Article  CAS  Google Scholar 

  19. Arrigo AP et al (2007) Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581(19):3665–3674

    Article  CAS  Google Scholar 

  20. Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272(11):2613–2627

    Article  CAS  Google Scholar 

  21. Carra S et al (2011) Alteration of protein folding and degradation in motor neuron diseases: implications and protective functions of small heat shock proteins. Prog Neurobiol (in press). doi:10.1016/j.bbr.2011.03.031

    Google Scholar 

  22. Horwitz J (2009) Alpha crystallin: the quest for a homogeneous quaternary structure. Exp Eye Res 88(2):190–194

    Article  CAS  Google Scholar 

  23. Cowieson NP, Kobe B, Martin JL (2008) United we stand: combining structural methods. Curr Opin Struct Biol 18(5):617–622

    Article  CAS  Google Scholar 

  24. Robinson CV, Sali A, Baumeister W (2007) The molecular sociology of the cell. Nature 450(7172):973–982

    Article  CAS  Google Scholar 

  25. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254(5038):1598–1603

    Article  CAS  Google Scholar 

  26. Karplus M, McCammon JA (1983) Dynamics of proteins: elements and function. Annu Rev Biochem 52:263–300

    Article  CAS  Google Scholar 

  27. Wüthrich K, Wagner G (1978) Internal motion in globular proteins. Trends Biol Sci 3(4):227–230

    Article  Google Scholar 

  28. Russel D et al (2009) The structural dynamics of macromolecular processes. Curr Opin Cell Biol 21(1):97–108

    Article  CAS  Google Scholar 

  29. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    Article  CAS  Google Scholar 

  30. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450(7172):964–972

    Article  CAS  Google Scholar 

  31. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci USA 102(19):6679–6685

    Article  CAS  Google Scholar 

  32. Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324(5924):198–203

    Article  CAS  Google Scholar 

  33. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5(11):808–814

    Article  CAS  Google Scholar 

  34. Kappe G, Boelens WC, de Jong WW (2010) Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15(4):457–461

    Article  CAS  Google Scholar 

  35. Haslbeck M et al (2004) A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J Mol Biol 343(2):445–455

    Article  CAS  Google Scholar 

  36. Kappe G et al (2004) Tsp36, a tapeworm small heat-shock protein with a duplicated alpha-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Proteins 57(1):109–117

    Article  CAS  Google Scholar 

  37. Poulain P, Gelly JC, Flatters D (2010) Detection and architecture of small heat shock protein monomers. PLoS One 5(4):e9990

    Article  CAS  Google Scholar 

  38. Benndorf R, Welsh MJ (2004) Shocking degeneration. Nat Genet 36(6):547–548

    Article  CAS  Google Scholar 

  39. Carver JA (1999) Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Prog Retin Eye Res 18(4):431–462

    Article  CAS  Google Scholar 

  40. Chernik IS et al (2007) Small heat shock protein Hsp20 (HspB6) as a partner of 14-3-3gamma. Mol Cell Biochem 295(1–2):9–17

    Article  CAS  Google Scholar 

  41. MacCoss MJ et al (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci USA 99(12):7900–7905

    Article  CAS  Google Scholar 

  42. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394(6693):595–599

    Article  CAS  Google Scholar 

  43. van Montfort RL et al (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8(12):1025–1030

    Article  CAS  Google Scholar 

  44. Takeda K et al (2011) Dimer structure and conformational variability in the N-terminal region of an archaeal small heat shock protein, StHsp14.0. J Struct Biol 174(1):92–99

    Article  CAS  Google Scholar 

  45. Hilario E et al (2011) Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer. J Mol Biol 408(1):74–86

    Article  CAS  Google Scholar 

  46. Bagnéris C et al (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392(5):1242–1252

    Article  CAS  Google Scholar 

  47. Baranova EV et al (2011) Three-dimensional structure of alpha-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411(1):110–122

    Article  CAS  Google Scholar 

  48. Laganowsky A et al (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19(5):1031–1043

    Article  CAS  Google Scholar 

  49. Berengian AR, Parfenova M, McHaourab HS (1999) Site-directed spin labeling study of subunit interactions in the alpha-crystallin domain of small heat-shock protein – comparison of the oligomer symmetry in alpha A-crystallin, HSP 27, and HSP 16.3. J Biol Chem 274(10):6305–6314

    Article  CAS  Google Scholar 

  50. Jehle S et al (2009) [alpha]B-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385(5):1481–1497

    Article  CAS  Google Scholar 

  51. Koteiche HA, McHaourab HS (1999) Folding pattern of the alpha-crystallin domain in alpha A-crystallin determined by site-directed spin labeling. J Mol Biol 294(2):561–577

    Article  CAS  Google Scholar 

  52. Feil IK et al (2001) A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 276(15):12024–12029

    Article  CAS  Google Scholar 

  53. Clark AR et al (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408(1):118–134

    Article  CAS  Google Scholar 

  54. Jehle S et al (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol 17(9):1037–1042

    Article  CAS  Google Scholar 

  55. Hasan A et al (2004) Thermal stability of human alpha-crystallins sensed by amide hydrogen exchange. Protein Sci 13(2):332–341

    Article  CAS  Google Scholar 

  56. Haley DA et al (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298(2):261–272

    Article  CAS  Google Scholar 

  57. van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  Google Scholar 

  58. Koteiche HA et al (2005) Atomic models by cryo-EM and site-directed spin labeling: application to the N-terminal region of Hsp16.5. Structure 13(8):1165–1171

    Article  CAS  Google Scholar 

  59. Jehle S et al (2011) N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci USA 108(16):6409–6414

    Article  CAS  Google Scholar 

  60. Braun N et al (2011) Multiple molecular architectures of the eye lens chaperone alphaB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci USA 108(51):20491–20496

    Article  CAS  Google Scholar 

  61. Stamler R et al (2005) Wrapping the alpha-crystallin domain fold in a chaperone assembly. J Mol Biol 353(1):68–79

    Article  CAS  Google Scholar 

  62. Cheng GL et al (2008) Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry. J Biol Chem 283(39):26634–26642

    Article  CAS  Google Scholar 

  63. Wintrode PL et al (2003) Solution structure and dynamics of a heat shock protein assembly probed by hydrogen exchange and mass spectrometry. Biochemistry 42(36):10667–10673

    Article  CAS  Google Scholar 

  64. Kim R et al (2003) On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii. Proc Natl Acad Sci USA 100(14):8151–8155

    Article  CAS  Google Scholar 

  65. Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci USA 106(37):15604–15609

    Article  CAS  Google Scholar 

  66. Baldwin AJ et al (2011) Quaternary dynamics of aB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. J Mol Biol 413(2):310–320

    Article  CAS  Google Scholar 

  67. Treweek TM et al (2010) A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, [alpha]A- and [alpha]B-crystallin. Exp Eye Res 91(5):691–699

    Article  CAS  Google Scholar 

  68. Ghahghaei A et al (2009) Structure/function studies of dogfish alpha-crystallin, comparison with bovine alpha-crystallin. Mol Vis 15:2411–2420

    CAS  Google Scholar 

  69. Hilton GR et al (2012) A labile C-terminal interaction mediates the quaternary dynamics of αB crystallin. Phil Trans R Soc B (under consideration)

    Google Scholar 

  70. Carver JA et al (1992) Identification by H-1-NMR spectroscopy of flexible C-terminal extensions in bovine lens alpha-crystallin. FEBS Lett 311(2):143–149

    Article  CAS  Google Scholar 

  71. Carver JA, Lindner RA (1998) NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol 22(3–4):197–209

    Article  CAS  Google Scholar 

  72. Aquilina JA et al (2005) Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J Biol Chem 280(15):14485–14491

    Article  CAS  Google Scholar 

  73. Takemoto LJ (1997) Changes in the C-terminal region of alpha-A crystallin during human cataractogenesis. Int J Biochem Cell Biol 29(2):311–315

    Article  CAS  Google Scholar 

  74. Laganowsky A, Eisenberg D (2010) Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin. Protein Sci 19(10):1978–1984

    Article  CAS  Google Scholar 

  75. Shi J et al (2006) Cryoelectron microscopy and EPR analysis of engineered symmetric and polydisperse Hsp16.5 assemblies reveals determinants of polydispersity and substrate binding. J Biol Chem 281(52):40420–40428

    Article  CAS  Google Scholar 

  76. Liddington RC et al (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354(6351):278–284

    Article  CAS  Google Scholar 

  77. Abrescia NG et al (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432(7013):68–74

    Article  CAS  Google Scholar 

  78. Koteiche HA, McHaourab HS (2002) The determinants of the oligomeric structure in Hsp16.5 are encoded in the alpha-crystallin domain. FEBS Lett 519(1–3):16–22

    Article  CAS  Google Scholar 

  79. Bertz M et al (2010) Structural and mechanical hierarchies in the alpha-crystallin domain dimer of the hyperthermophilic small heat shock protein Hsp16.5. J Mol Biol 400(5):1046–1056

    Article  CAS  Google Scholar 

  80. Basha E et al (2010) Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 285(15):11489–11497

    Article  CAS  Google Scholar 

  81. Aquilina JA et al (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in alphaB-crystallin. Proc Natl Acad Sci USA 100(19):10611–10616

    Article  CAS  Google Scholar 

  82. Baldwin AJ et al (2011) αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J Mol Biol 413(2):297–309

    Article  CAS  Google Scholar 

  83. Benesch JLP et al (2010) The quaternary organization and dynamics of the molecular chaperone HSP26 are thermally regulated. Chem Biol 17(9):1008–1017

    Article  CAS  Google Scholar 

  84. Kennaway CK et al (2005) Dodecameric structure of the small heat shock protein Acr1 from Mycobacterium tuberculosis. J Biol Chem 280(39):33419–33425

    Article  CAS  Google Scholar 

  85. Baldwin AJ et al (2011) The polydispersity of αB-crystallin is rationalised by an inter-converting polyhedral architecture. Structure 19(12):1855–1863

    Article  CAS  Google Scholar 

  86. Tardieu A (1988) Eye lens proteins and transparency: from light transmission theory to solution X-ray structural analysis. Annu Rev Biophys Biophys Chem 17:47–70

    Article  CAS  Google Scholar 

  87. Alexander N et al (2008) De novo high-resolution protein structure determination from sparse spin-labeling EPR data. Structure 16(2):181–195

    Article  CAS  Google Scholar 

  88. McHaourab HS, Berengian AR, Koteiche HA (1997) Site-directed spin-labeling study of the structure and subunit interactions along a conserved sequence in the alpha-crystallin domain of heat-shock protein. 27. Evidence of a conserved subunit interface. Biochemistry 36(48):14627–14634

    Article  CAS  Google Scholar 

  89. Scheres SH et al (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4(1):27–29

    Article  CAS  Google Scholar 

  90. White HE et al (2004) Recognition and separation of single particles with size variation by statistical analysis of their images. J Mol Biol 336(2):453–460

    Article  CAS  Google Scholar 

  91. Benesch JLP, Ruotolo BT (2011) Mass spectrometry: an approach come-of-age for structural and dynamical biology. Curr Opin Struct Biol 21(5):641–649

    Article  CAS  Google Scholar 

  92. Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J Mol Biol 277(1):27–35

    Article  CAS  Google Scholar 

  93. Haley DA, Horwitz J, Stewart PL (1999) Image restrained modeling of alpha B-crystallin. Exp Eye Res 68(1):133–136

    Article  CAS  Google Scholar 

  94. Peschek J et al (2009) The eye lens chaperone alpha-crystallin forms defined globular assemblies. Proc Natl Acad Sci USA 106(32):13272–13277

    Article  CAS  Google Scholar 

  95. White HE et al (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure 14(7):1197–1204

    Article  CAS  Google Scholar 

  96. Lambert W et al (2011) Subunit arrangement in the dodecameric chloroplast small heat shock protein Hsp21. Protein Sci: Publ Protein Soc 20(2):291–301

    Article  CAS  Google Scholar 

  97. Haslbeck M et al (2008) Structural dynamics of archaeal small heat shock proteins. J Mol Biol 378(2):362–374

    Article  CAS  Google Scholar 

  98. Cao A et al (2008) Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii. Biochim Biophys Acta Proteins Proteomics 1784(3):489–495

    Article  CAS  Google Scholar 

  99. Kim DR et al (2003) Activation mechanism of HSP16.5 from Methanococcus jannaschii. Biochem Biophys Res Commun 307(4):991–998

    Article  CAS  Google Scholar 

  100. Franzmann TM et al (2008) Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain. Mol Cell 29(2):207–216

    Article  CAS  Google Scholar 

  101. Sobott F et al (2002) Subunit exchange of multimeric protein complexes. Real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J Biol Chem 277(41):38921–38929

    Article  CAS  Google Scholar 

  102. Siezen RJ, Bindels JG, Hoenders HJ (1978) The quaternary structure of bovine alpha-crystallin. Size and charge microheterogeneity: more than 1000 different hybrids? Eur J Biochem 91(2):387–396

    Article  CAS  Google Scholar 

  103. Siezen RJ, Owen EA (1983) Physicochemical characterization of high-molecular-weight alpha-crystallin subpopulations from the calf lens nucleus. Biochim Biophys Acta 749(3):227–237

    Article  CAS  Google Scholar 

  104. van den Oetelaar PJ et al (1990) A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunits. Biochemistry 29(14):3488–3493

    Article  Google Scholar 

  105. Bova MP et al (1997) Subunit exchange of alpha A-crystallin. J Biol Chem 272(47):29511–29517

    Article  CAS  Google Scholar 

  106. Bova MP et al (2000) Subunit exchange of small heat shock proteins – analysis of oligomer formation of alpha A-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275(2):1035–1042

    Article  CAS  Google Scholar 

  107. Guan YH et al (2006) Subunit exchange of MjHsp16.5 studied by single-molecule imaging and fluorescence resonance energy transfer. J Am Chem Soc 128(22):7203–7208

    Article  CAS  Google Scholar 

  108. Painter AJ et al (2008) Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem Biol 15(3):246–253

    Article  CAS  Google Scholar 

  109. Haslbeck M et al (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18(23):6744–6751

    Article  CAS  Google Scholar 

  110. Benesch JLP, Sobott F, Robinson CV (2003) Thermal dissociation of multimeric protein complexes by using nanoelectrospray mass spectrometry. Anal Chem 75(10):2208–2214

    Article  CAS  Google Scholar 

  111. Stengel F et al (2010) Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. Proc Natl Acad Sci USA 107(5):2007–2012

    Article  CAS  Google Scholar 

  112. Ito H et al (2001) Phosphorylation-induced change of the oligomerization state of alpha B-crystallin. J Biol Chem 276(7):5346–5352

    Article  CAS  Google Scholar 

  113. Kato K et al (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269(15):11274–11278

    CAS  Google Scholar 

  114. Michiel M et al (2009) Abnormal assemblies and subunit exchange of alpha B-crystallin R120 mutants could be associated with destabilization of the dimeric substructure. Biochemistry 48(2):442–453

    Article  CAS  Google Scholar 

  115. Treweek TM et al (2007) Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation. PLoS One 2(10):e1046

    Article  CAS  Google Scholar 

  116. Hayes VH, Devlin G, Quinlan RA (2008) Truncation of alphaB-crystallin by the myopathy-causing Q151X mutation significantly destabilizes the protein leading to aggregate formation in transfected cells. J Biol Chem 283(16):10500–10512

    Article  CAS  Google Scholar 

  117. Ke L et al (2011) HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 6(6):e20395

    Article  CAS  Google Scholar 

  118. Vos MJ et al (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19(23):4677–4693

    Article  CAS  Google Scholar 

  119. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10449–10453

    Article  CAS  Google Scholar 

  120. Brady JP et al (1997) Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. Proc Natl Acad Sci USA 94(3):884–889

    Article  CAS  Google Scholar 

  121. Brady JP et al (2001) AlphaB-crystallin in lens development and muscle integrity: a gene knockout approach. Invest Ophthalmol Vis Sci 42(12):2924–2934

    CAS  Google Scholar 

  122. Jakob U et al (1993) Small heat-shock proteins are molecular chaperones. J Biol Chem 268(3):1517–1520

    CAS  Google Scholar 

  123. Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270(18):10432–10438

    Article  CAS  Google Scholar 

  124. Merck KB et al (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein – a family of chaperones. J Biol Chem 268(2):1046–1052

    CAS  Google Scholar 

  125. Chang Z et al (1996) Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J Biol Chem 271(12):7218–7223

    Article  CAS  Google Scholar 

  126. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  Google Scholar 

  127. Friedrich KL et al (2004) Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes. J Biol Chem 279(2):1080–1089

    Article  CAS  Google Scholar 

  128. Stromer T et al (2003) Analysis of the interaction of small heat shock proteins with unfolding proteins. J Biol Chem 278(20):18015–18021

    Article  CAS  Google Scholar 

  129. Basha E, Friedrich KL, Vierling E (2006) The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J Biol Chem 281(52):39943–39952

    Article  CAS  Google Scholar 

  130. Stengel F et al. Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem Biol (in press)

    Google Scholar 

  131. Eyles SJ, Gierasch LM (2010) Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proc Natl Acad Sci USA 107(7):2727–2728

    Article  CAS  Google Scholar 

  132. Basha E et al (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J Biol Chem 279(9):7566–7575

    Article  CAS  Google Scholar 

  133. Ecroyd H et al (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 401(1):129–141

    Article  CAS  Google Scholar 

  134. Giese KC et al (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci USA 102(52):18896–18901

    Article  CAS  Google Scholar 

  135. Mogk A et al (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585–595

    Article  CAS  Google Scholar 

  136. Petko L, Lindquist S (1986) Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45(6):885–894

    Article  CAS  Google Scholar 

  137. Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277(48):46310–46318

    Article  CAS  Google Scholar 

  138. Haslbeck M et al (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23(3):638–649

    Article  CAS  Google Scholar 

  139. Ehrnsperger M et al (1999) The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem 274(21):14867–14874

    Article  CAS  Google Scholar 

  140. Farahbakhsh ZT et al (1995) Interaction of alpha-crystallin with spin-labeled peptides. Biochemistry 34(2):509–516

    Article  CAS  Google Scholar 

  141. Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71(2):288–294

    Article  CAS  Google Scholar 

  142. Koretz JF, Doss EW, LaButti JN (1998) Environmental factors influencing the chaperone-like activity of alpha-crystallin. Int J Biol Macromol 22(3–4):283–294

    Article  CAS  Google Scholar 

  143. Poon S et al (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277(42):39532–39540

    Article  CAS  Google Scholar 

  144. Bassnett S, Duncan G (1986) Variation of pH with depth in the rat lens measured by double-barrelled ion-sensitive microelectrodes. In: Duncan G (ed) The lens: transparency and cataract. Proceedings of the EURAGE/BBS symposium, Eurage, Rijswijk, pp. 77–85

    Google Scholar 

  145. Mathias RT, Riquelme G, Rae JL (1991) Cell to cell communication and pH in the frog lens. J Gen Physiol 98(6):1085–1103

    Article  CAS  Google Scholar 

  146. Poole-Wilson PA (1978) Measurement of myocardial intracellular pH in pathological states. J Mol Cell Cardiol 10(6):511–526

    Article  CAS  Google Scholar 

  147. Matuszewska E et al (2008) Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology 154(Pt 6):1739–1747

    Article  CAS  Google Scholar 

  148. Ahmad MF et al (2008) Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins alphaA- and alphaB-crystallin. J Mol Biol 382(3):812–824

    Article  CAS  Google Scholar 

  149. Narayanan S et al (2006) alphaB-crystallin competes with Alzheimer’s disease beta-amyloid peptide for peptide-peptide interactions and induces oxidation of Abeta-Met35. FEBS Lett 580(25):5941–5946

    Article  CAS  Google Scholar 

  150. Biswas A, Das KP (2008) Zn2+ enhances the molecular chaperone function and stability of alpha-crystallin. Biochemistry 47(2):804–816

    Article  CAS  Google Scholar 

  151. Ganadu ML et al (2004) Effects of divalent metal ions on the alphaB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper(II) and protein. J Inorg Biochem 98(6):1103–1109

    Article  CAS  Google Scholar 

  152. Jang HH et al (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117(5):625–635

    Article  CAS  Google Scholar 

  153. Lee JR et al (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci USA 106(14):5978–5983

    Article  CAS  Google Scholar 

  154. Biswas A, Das KP (2004) Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J Biol Chem 279(41):42648–42657

    Article  CAS  Google Scholar 

  155. Muchowski PJ, Clark JI (1998) ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystallin. Proc Natl Acad Sci USA 95(3):1004–1009

    Article  CAS  Google Scholar 

  156. Hilario E et al (2006) Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the alpha-crystallin family. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt 5):446–448

    Article  CAS  Google Scholar 

  157. Muchowski PJ et al (1999) ATP and the core: “alpha-crystallin” domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 274(42):30190–30195

    Article  CAS  Google Scholar 

  158. Saibil HR (2008) Chaperone machines in action. Curr Opin Struct Biol 18(1):35–42

    Article  CAS  Google Scholar 

  159. Ito H et al (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J Biol Chem 272(47):29934–29941

    Article  CAS  Google Scholar 

  160. Wang K, Gawinowicz MA, Spector A (2000) The effect of stress on the pattern of phosphorylation of alphaA and alphaB crystallin in the rat lens. Exp Eye Res 71(4):385–393

    Article  CAS  Google Scholar 

  161. Marin R, Landry J, Tanguay RM (1996) Tissue-specific posttranslational modification of the small heat shock protein HSP27 in Drosophila. Exp Cell Res 223(1):1–8

    Article  CAS  Google Scholar 

  162. Aquilina JA et al (2004) Phosphorylation of alpha B-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279(27):28675–28680

    Article  CAS  Google Scholar 

  163. Koteiche HA, McHaourab HS (2002) Effect of phosphorylation on the chaperone function of alpha B crystallin. Invest Ophthalmol Vis Sci 43:3567

    Google Scholar 

  164. Koteiche HA, McHaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins – phosphorylation-induced activation of two-mode binding in alpha B-crystallin. J Biol Chem 278(12):10361–10367

    Article  CAS  Google Scholar 

  165. Gaestel M (2002) sHsp-phosphorylation: enzymes, signaling pathways and functional implications. Prog Mol Subcell Biol 28:151–169

    Article  CAS  Google Scholar 

  166. Ehrnsperger M et al (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16(2):221–229

    Article  CAS  Google Scholar 

  167. Lee GJ et al (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16(3):659–671

    Article  CAS  Google Scholar 

  168. Lee GJ, Vierling E (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol 122(1):189–198

    Article  CAS  Google Scholar 

  169. Veinger L et al (1998) The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273(18):11032–11037

    Article  CAS  Google Scholar 

  170. Liberek K, Lewandowska A, Zietkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27(2):328–335

    Article  CAS  Google Scholar 

  171. Matuszewska M et al (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280(13):12292–12298

    Article  CAS  Google Scholar 

  172. Mogk A et al (2003) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278(33):31033–31042

    Article  CAS  Google Scholar 

  173. Haslbeck M et al (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 280(25):23861–23868

    Article  CAS  Google Scholar 

  174. Cashikar AG, Duennwald M, Lindquist SL (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 280(25):23869–23875

    Article  CAS  Google Scholar 

  175. Ratajczak E, Zietkiewicz S, Liberek K (2009) Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J Mol Biol 386(1):178–189

    Article  CAS  Google Scholar 

  176. Vos MJ et al (2011) Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy 7(1):101–103

    Article  Google Scholar 

  177. den Engelsman J et al (2003) The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 278(7):4699–4704

    Article  CAS  Google Scholar 

  178. Parcellier A et al (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23(16):5790–5802

    Article  CAS  Google Scholar 

  179. Lin DI et al (2006) Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 24(3):355–366

    Article  CAS  Google Scholar 

  180. Ahner A et al (2007) Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol Biol Cell 18(3):806–814

    Article  CAS  Google Scholar 

  181. Bissonnette SA et al (2010) The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Mol Microbiol 75(6):1539–1549

    Article  CAS  Google Scholar 

  182. Meyer AS, Baker TA (2011) Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr Opin Microbiol 14(2):194–199

    Article  CAS  Google Scholar 

  183. Stromer T et al (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domain is important for oligomer assembly and the binding of unfolding proteins. J Biol Chem 279(12):11222–11228

    Article  CAS  Google Scholar 

  184. Aquilina JA, Watt SJ (2007) The N-terminal domain of alphaB-crystallin is protected from proteolysis by bound substrate. Biochem Biophys Res Commun 353(4):1115–1120

    Article  CAS  Google Scholar 

  185. Lindner RA et al (2000) Mouse Hsp25, a small heat shock protein – the role of its C-terminal extension in oligomerization and chaperone action. Eur J Biochem 267(7):1923–1932

    Article  CAS  Google Scholar 

  186. Smulders R et al (1996) Immobilization of the C-terminal extension of bovine alphaA-crystallin reduces chaperone-like activity. J Biol Chem 271(46):29060–29066

    Article  CAS  Google Scholar 

  187. Bhattacharyya J et al (2006) Mini-alphaB-crystallin: a functional element of alphaB-crystallin with chaperone-like activity. Biochemistry 45(9):3069–3076

    Article  CAS  Google Scholar 

  188. Sharma KK, Kaur H, Kester K (1997) Functional elements in molecular chaperone alpha-crystallin: identification of binding sites in alpha B-crystallin. Biochem Biophys Res Commun 239(1):217–222

    Article  CAS  Google Scholar 

  189. Sharma KK et al (1998) Interaction of 1,1′-bi(4-anilino)naphthalene-5,5′-disulfonic acid with alpha-crystallin. J Biol Chem 273(15):8965–8970

    Article  CAS  Google Scholar 

  190. Shashidharamurthy R et al (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280(7):5281–5289

    Article  CAS  Google Scholar 

  191. Franzmann TM et al (2005) The activation mechanism of Hsp26 does not require dissociation of the oligomer. J Mol Biol 350(5):1083–1093

    Article  CAS  Google Scholar 

  192. Augusteyn RC (2004) Dissociation is not required for alpha-crystallin's chaperone function. Exp Eye Res 79(6):781–784

    Article  CAS  Google Scholar 

  193. Ragusa MJ et al (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 17(4):459–464

    Article  CAS  Google Scholar 

  194. Carver JA et al (2002) The interaction of the molecular chaperone alpha-crystallin with unfolding alpha-lactalbumin: a structural and kinetic spectroscopic study. J Mol Biol 318(3):815–827

    Article  CAS  Google Scholar 

  195. Fontaine JM et al (2005) Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun 337(3):1006–1011

    Article  CAS  Google Scholar 

  196. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302(5909):575–581

    Article  CAS  Google Scholar 

  197. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275, Epub June 16, 2009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful for the stimulating interactions we have had with all of our collaborators in the study of sHSPs, and thank all of the Benesch group for helpful discussion. We thank the Wellcome Trust (GRH, FS), the European Molecular Biology Organization (HL, AJB), European Union 7th Framework Program “PROSPECTS” (FS), Canadian Institutes of Health Research (AJB), and the Royal Society (JLPB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin L. P. Benesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilton, G.R., Lioe, H., Stengel, F., Baldwin, A.J., Benesch, J.L.P. (2012). Small Heat-Shock Proteins: Paramedics of the Cell. In: Jackson, S. (eds) Molecular Chaperones. Topics in Current Chemistry, vol 328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_324

Download citation

Publish with us

Policies and ethics