Skip to main content

The physiology, genetics and molecular biology of plant aluminum resistance and toxicity

  • Chapter

Part of the book series: Plant Ecophysiology ((KLEC,volume 4))

Abstract

Aluminum (Al) toxicity is the primary factor limiting crop production on acidic soils (pH values of 5 or below), and because 50% of the world’s potentially arable lands are acidic, Al toxicity is a very important limitation to worldwide crop production. This review examines our current understanding of mechanisms of Al toxicity, as well as the physiological, genetic and molecular basis for Al resistance. Al resistance can be achieved by mechanisms that facilitate Al exclusion from the root apex (Al exclusion) and/or by mechanisms that confer the ability of plants to tolerate Al in the plant symplasm (Al tolerance). Compelling evidence has been presented in the literature for a resistance mechanism based on exclusion of Al due to Al-activated carboxylate release from the growing root tip. More recently, researchers have provided support for an additional Al-resistance mechanism involving internal detoxification of Al with carboxylate ligands (deprotonated organic acids) and the sequestration of the Al-carboxylate complexes in the vacuole. This is a field that is entering a phase of new discovery, as researchers are on the verge of identifying some of the genes that contribute to Al resistance in plants. The identification and characterization of Al resistance genes will not only greatly advance our understanding of Al-resistance mechanisms, but more importantly, will be the source of new molecular resources that researchers will use to develop improved crops better suited for cultivation on acid soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S J, Sivaguru M, Chung G C, Rengel Z and Matsumoto H 2002 Aluminium-induced growth inhibition is associated with impaired efflux and influx of H+ across the plasma membrane in root apices of squash (Cucurbita pepo). J. Exp. Bot. 53, 1959–1966.

    Article  CAS  PubMed  Google Scholar 

  • Ahn S J, Sivaguru M, Osawa H, Chung G G and Matsumoto H 2001 Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol. 126, 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  • Akeson M and Munns D N 1990 Uptake of aluminum into root cytoplasm; predicted rates for important solution complexes. J. Plant Nutr. 13, 467–484.

    CAS  Google Scholar 

  • Akeson M A and Munns D N 1989 Lipid bilayer permeation by neutral aluminum citrate and by three alpha-hydroxy carboxylic acids. Biochim. Biophys. Acta. 984, 200–206.

    CAS  PubMed  Google Scholar 

  • Akeson M A, Munns D N and Burau R G 1989 Adsorption of A13+ to phosphatidylcholine vesicles. Biochm. Biophys. Acta. 986, 200–206.

    Google Scholar 

  • Alessa L and Oliveira L 2001 Aluminum toxicity studies in Vaucheria longicaulis var macounii (Xanthophyta, Tribophyceae). II. Effects on the F-actin array. Env. Exp. Bot. 45, 223–237.

    CAS  Google Scholar 

  • Anderson M, Gregory R, Thompson S, Souza D, Paul S, Mulligan R, Smith A and Welsh M 1991 Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.

    CAS  PubMed  Google Scholar 

  • Aniol A and Gustafson J 1984 Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Can. J. Genet. Cytol. 26, 701–705.

    Google Scholar 

  • Barcelo J and Poschenrieder C 2002 Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Env. Exp. Bot. 48, 75–92.

    CAS  Google Scholar 

  • Basu U, Good A and Taylor G 2001 Transgenic Brassica napus plants overexpressing aluminum-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminum. Plant Cell Environ. 24, 1269–1278.

    Article  CAS  Google Scholar 

  • Blamley F P C, Asher C D, Kerven G L and Edwards D G 1993 Factors affecting aluminum sorption by calcium pectate. Plant Soil 149, 87–94.

    Google Scholar 

  • Blancaflor E, Jones D and Gilroy S 1998 Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize. Plant Physiol. 118, 159–172.

    Article  CAS  PubMed  Google Scholar 

  • Bot A J, Nachtergaele F O, Young A, 2000 Land Resource Potential and Constraints at Regional and Country Levels. Food and Agricultural Organization of the United Nations, Rome, 114 p.

    Google Scholar 

  • Bowler C, Van Montagu M and Inze D 1992 Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116.

    Article  CAS  Google Scholar 

  • Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J and Maurel C 2000 Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biomembranes 1465, 99–218.

    Google Scholar 

  • Cakmak I and Horst W J 1991 Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83, 463–468.

    Article  CAS  Google Scholar 

  • Ciamporova M 2002 Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol. Plant. Prague 45, 161–171.

    CAS  Google Scholar 

  • de la Fuente J, Ramirez-Rodriguez V, Cabrera-Ponce J and Herrera-Estrella L 1997 Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276, 1566–1568.

    PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton C D, Bennet R J, Jagadish V C and Randall P J 1993a Aluminum tolerance in wheat (Triticum aestivum L.): I. Uptake and distribution of aluminum in root apices. Plant Physiol. 103, 685–693.

    CAS  PubMed  Google Scholar 

  • Delhaize E, Hebb D and Ryan P 2001 Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 125, 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Ryan P R and Randall P J 1993b Aluminum tolerance in wheat (Triticum aestivum L.); II. Aluminumstimulated excretion of malic acid from root apices. Plant Physiol. 103, 695–702.

    CAS  PubMed  Google Scholar 

  • Drummond R, Guimaraes C, Felix J, Ninamango-Cardenas F, Carneiro N, Paiva E and Menossi M 2001 Prospecting sugar-cane genes involved in aluminum tolerance. Genet. Mol. Biol. 24, 221–230.

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner R, Ezaki Y and Matsumoto H 2000 Expression of aluminum-induced genes in transgenic arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 122, 657–665.

    Article  CAS  PubMed  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M and Matsumoto H 2001 Different mechanisms of four aluminum (Al)-resistant transgenes for Al Toxicity in Arabidopsis. Plant Physiol. 127, 918–927.

    Article  CAS  PubMed  Google Scholar 

  • Ezaki B, Tsugita S and Matsumoto H 1996 Expression of a moderately anionic peroxidases is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol. Plant. 96, 21–28.

    Article  CAS  Google Scholar 

  • Ezaki B, Yamamoto Y and Matsumoto H 1995 Cloning and sequencing of the cDNAs induced by aluminum treatment and Pi starvation in cultured tobacco cells. Physiol. Plant 93, 11–18.

    Article  CAS  Google Scholar 

  • Finkelstei D, Ewing R, Gollub J, Sterky F, Cherry J and Somerville S 2002 Microarray data quality analysis: lessons from the AFGC project. Arabidopsis Functional Genomics Consortium. Plant Mol. Biol. 48, 119–131.

    Google Scholar 

  • Foy C D 1988 Plant adaptation to acid, aluminum-toxic soils. Commun. Soil Sci. Plant Anal. 19, 959–987.

    CAS  Google Scholar 

  • Foyer C H, Descourvieres P and Kunert K J 1994 Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell. Environ. 17, 507–523.

    CAS  Google Scholar 

  • Franklin A E and Cande W Z 1999 Nuclear organization and chromosome segregation. Plant Cell 11, 523–534.

    CAS  PubMed  Google Scholar 

  • Frantzios G, Galatis B and Apostolakos P 2001 Aluminum effects on microtubule organization in dividing root tip cells of Triticum turgidum. II. Cytokinetic cells. J. Plant Res. 114, 157–170.

    CAS  Google Scholar 

  • Frantzios G, Galatis B and Apostolakos P 2000 Aluminum effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I. Mitotic cells. New Phytol. 145, 211–224.

    Article  CAS  Google Scholar 

  • Gale M and Devos K 1998 Comparative genetics in the grasses. Proc. Natl Acad. Sci. USA 95, 1971–1974.

    Article  CAS  PubMed  Google Scholar 

  • Gallego F and Benito C 1997 Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor. Applied Genet. 95, 393–399.

    CAS  Google Scholar 

  • Gallego F, Calles B and Benito C 1998 Molecular markers linked to the aluminium tolerance gene altl in rye (Secale cereale L.). Theor. Applied Genet. 97, 1104–1109.

    CAS  Google Scholar 

  • Garvin D and Carver B 2003 Role of the genotype in tolerance to acidity and aluminum toxicity. In Handbook of soil acidity. Ed. Z Rengel. Marcel Dekker, New York.

    Google Scholar 

  • Gassmann W and Schroeder J I 1994 Inward-rectifying K+ channels in root hairs of wheat (a mechanism for aluminum-sensitive low-affinity K+ uptake and membrane potential control). Plant Physiol. 105, 1399–1408.

    CAS  PubMed  Google Scholar 

  • Giaveno G, Miranda-Filho J and Furlani P 2001 Inheritance of aluminum tolerance in maize (Zea mays L). J. Genet. Breed 55, 51–56.

    CAS  Google Scholar 

  • Grabski S, Arnoys E, Busch B and Schindler M 1998 Regulation of actin tension in plant cells by kinases and phosphatases. Plant Physiol. 116, 279–290.

    Article  CAS  Google Scholar 

  • Grabski S and Schindler M 1995 Aluminum induces rigor within the actin network of soybean cells. Plant Physiol. 108, 897–901.

    CAS  PubMed  Google Scholar 

  • Hayes J and Ma J 2003 A1-induced efflux of organic acid anions is poorly associated with internal organic acid metabolism in triticale roots. J. Exp. Bot. 54, 1753–1759.

    Article  CAS  PubMed  Google Scholar 

  • Hede A, Skovmand B and Lopez-Cesati J 2001 Acid soils and aluminum toxicity. In Application of physiology in wheat breeding. Ed. M Reynolds. pp. 172–182. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Hoekenga O A, Vision T J, Shaff J E, Monforte A J, Lee G P, Howell S H and Kochian L V 2003 Identification and Characterization of Aluminum Tolerance Loci in Arabidopsis (Landsberg erecta x Columbia) by Quantitative Trait Locus Mapping. A Physiologically Simple But Genetically Complex Trait. Plant Physiol. 132, 936–948.

    Article  CAS  PubMed  Google Scholar 

  • Horst W J, Asher C J, Cakmak I, Szulkiewicz P and Wissemeier A H 1992 Short-term responses of soybean roots to aluminium. J Plant Physiol. 140, 174–178.

    CAS  Google Scholar 

  • Horst W J, Puschel A K and Schmohl N 1997 Induction of callose formation is a sensitive marker for genotypic aluminum sensitivity in maize. Plant Soil 192, 23–30.

    Article  CAS  Google Scholar 

  • Horst W J, Schmohl N, Kollmeier M, Baluska F and Sivaguru M 1999 Does aluminum affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum?. Plant Soil 215, 163–174.

    Article  CAS  Google Scholar 

  • Huang J, Pellet D, Papernik L and Kochian L 1996 Aluminum interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum-sensitive and-resistant wheat cultivars. Plant Physiol. 110, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Huang J W, Shaff J E, Grunes D L and Kochian L V 1992 Aluminum effects on calcium fluxes at the root apex of aluminum-tolerant and aluminum-sensitive wheat cultivars. Plant Physiol. 98, 230–237.

    CAS  Google Scholar 

  • Ishikawa S, Wagatsuma T, Sasaki R and Ofei-Manu P 2000 Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species. Soil Sci. Plant Nutr. 46, 751–758.

    CAS  Google Scholar 

  • Jones D, Gilroy S, Larsen P, Howell S and Kochian L 1998a Effect of aluminum on cytoplasmic Ca2+ homeostasis in root hairs of Arabidopsis thaliana (L.). Planta 206, 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Jones D and Kochian L 1995 Aluminum inhibition of the inositol 1,4,5-triphosphate signal transduction pathway in wheat roots; a role in aluminum toxicity?. Plant Cell 7, 1913–1922.

    CAS  PubMed  Google Scholar 

  • Jones D, Kochian L and Gilroy S 1998b Aluminum induces a decrease in cytosolic calcium concentration in BY-2 tobacco cell cultures. Plant Physiol. 116, 81–89.

    Article  CAS  Google Scholar 

  • Jones D L and Kochian L V 1997 Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett. 400, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Jorge R and Arruda P 1997 Aluminum-induced organic acid exudation by roots of an aluminum-tolerant tropical maize. Phyto-chemistry 45, 675–681.

    CAS  Google Scholar 

  • Kataoka T, Stekelenburg A, Nakanishi T, Delhaize E and Ryan P 2002 Several lanthanides activate malate efflux from roots of aluminium-tolerant wheat. Plant Cell Environ. 25, 453–460.

    Article  CAS  Google Scholar 

  • Kayama M 2001 Comparison of the aluminum tolerance of Miscanthus sinensis Anderss and Miscanthus sacchariflorus Bentham in hydroculture. Int. J. Plant Sci. 162, 1025–1031.

    Article  CAS  Google Scholar 

  • Kidd P, Llugany M, Poschenrieder C, Gunse B and Barcelo J 2001 The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 1339–1352.

    Article  CAS  PubMed  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J and Tester M 2000 Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J. 21, 225–229.

    Article  CAS  PubMed  Google Scholar 

  • Kinraide T and Parker D 1989 Assessing the phytotoxicity of mono-nuclear hydroxy-aluminum. Plant Cell Environ. 12, 478–487.

    Google Scholar 

  • Kinraide T B 1991 Identity of the rhizotoxic aluminum species. Plant Soil 134, 167–178.

    CAS  Google Scholar 

  • Kinraide T B and Parker D R 1990 Apparent phytotoxicity of mononuclear hydroxy-aluminum to four dicotyledonous species. Physiol. Plant 79, 283–288.

    Article  CAS  Google Scholar 

  • Kinraide T B, Ryan P R and Kochian L V 1994 A13+-Ca2+ interactions in aluminum rhizotoxicity: II. Evaluating the Ca2+-displacement hypothesis. Planta. 192, 104–109.

    CAS  Google Scholar 

  • Kinraide T B, Ryan P R and Kochian L V 1992 Interactive effects of A13+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 99, 1461–1468.

    CAS  Google Scholar 

  • Kinraide T B, Yermiyahu U and Rytwo G 1998 Computation of surface electrical potentials of plant cell membranes. Correspondence To published zeta potentials from diverse plant sources. Plant Physiol. 118, 505–512.

    CAS  PubMed  Google Scholar 

  • Kobayashi Y and Koyama H 2002 QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell Physiol. 43, 1526–1533.

    CAS  PubMed  Google Scholar 

  • Kochian L V, Hoekenga O A, Piñeros M A, 2004 Growth of plants in acid soils. Annu. Rev. Plant Biol, 55, (in press).

    Google Scholar 

  • Kochian L V and Jones D L 1997 Aluminum toxicity and resistance in plants. In Research Issues in Aluminum Toxicity. Eds R Yokel and M Golub. pp. 69–90. Taylor and Francis, Washington, D.C.

    Google Scholar 

  • Kollmeier M, Dietrich P, Bauer C, Horst W and Hedrich R 2001 Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol. 126, 397–410.

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier M, Felle H H and Horst W J 2000 Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?. Plant Physiol 122, 945–956.

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E and Shibata D 2000 Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 41, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  • Lazof D B, Rincón M, Rufty T W, Mactown C T and Carter T E 1994 Aluminum accumulation and associated effects on I3NO3 influx in roots of two soybean genotypes differing in Al tolerance. Plant Soil 164, 291–297.

    CAS  Google Scholar 

  • Leonhardt N, Vavasseur A and Forestier C 1999 ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells. Plant Cell 11, 1141–1152.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma J and Matsumoto H 2000 Pattern of aluminuminduced secretion of organic acids differs between rye and wheat. Plant Physiol. 123, 1537–1544.

    CAS  PubMed  Google Scholar 

  • Lindberg S and Strid H 1997 Aluminum induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiol. Plant. 99, 405–414.

    Article  CAS  Google Scholar 

  • Lindberg S, Szynkier K and Greger M 1991 Aluminum effects on transmembrane potentials in cells of fibrous roots of sugar beet. Physiol. Plant. 83, 54–62.

    Article  CAS  Google Scholar 

  • Ma J and Furukawa J 2003 Recent progress in the research of external Al detoxification in higher plants: a minireview. J. Inorg. Biochem. 97, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Ma J and Hiradate S 2000 Form of aluminium for uptake and trans-location in buckwheat (Fagopyrum esculentum Moench). Planta 211, 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Hiradate S and Matsumoto H 1998 High aluminum resistance in buckwheat: II. Oxalic acid detoxifies aluminum internally. Plant Physiol. 117, 753–759.

    Article  CAS  Google Scholar 

  • Ma J, Ryan P and Delhaize E 2001 Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278.

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Shen R, Zhao Z, Wissuwa M, Takeuchi Y, Ebitani T and Yano M 2002a Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol. 43, 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zheng S and Matsumoto H 1997a Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38, 1019–1025.

    CAS  Google Scholar 

  • Ma J, Zheng S, Matsumoto H and Hiradate S 1997b Detoxifying aluminum with buckwheat. Nature 390, 569–570.

    Article  Google Scholar 

  • Ma J F 2000 Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol. 41, 383–390.

    CAS  PubMed  Google Scholar 

  • Ma J F, Hiradate S, Nomoto K, Iwashita T and Matsumoto H 1997c Internal detoxification mechanism of Al in hydrangea: Identification of Al form in the leaves. Plant Physiol. 113, 1033–1039.

    CAS  PubMed  Google Scholar 

  • Ma J F, Taketa S and Yang Z M 2000 Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 122, 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Ma Q F, Rengel Z and Kuo J 2002b Aluminum toxicity in rye (Secale cereale): Root growth and dynamics of cytoplasmic Ca2+ in intact root tips. Annals Bot. 89, 241–244.

    CAS  Google Scholar 

  • Ma Z and Miyasaka S 1998 Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.

    Article  PubMed  Google Scholar 

  • Magalhaes J, 2002 Molecular genetic and physiological investigations of aluminum tolerance in sorghum (Sorghum bicolor L. Moench). PhD thesis. Cornell Univ. pp. 192.

    Google Scholar 

  • Magalhaes J, Garvin D, Sorrels M, Klein P, Schaffert R, Wang Y, Li L, Kochian L, 2003 Comparative Mapping of AltSB, a Novel Aluminum Tolerance Gene in Sorghum bicolor (L.) Moench, Reveals Inter-Tribe Synteny Among Al Tolerance Genes in the Poaceae. Genetics (submitted).

    Google Scholar 

  • Magnavaca R, Gardner C and Clark R 1987 Inheritance of aluminum tolerance in maize. In Genetic aspects of plant mineral nutrition. Eds H Gabelman and B Loughman. pp. 201–212. Martinus Nijhoff, Dordrecht, The Netherlands.

    Google Scholar 

  • Massot N, Llugany M, Poschenrieder C and Barcelo J 1999 Callose production as indicator of aluminium toxicity in bean cultivars. J. Plant Nutr. 22, 1–10.

    CAS  Google Scholar 

  • Matsumoto H 1991 Biochemical mechanism of the toxicity of aluminum and the sequestration of aluminum in plant cells. In Plant-Soil Interactions at Low pH. Eds R J Wright, V C Baligar and R P Murrmann. pp. 825–838. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Matsumoto H 2000 cell biology of aluminum toxicity and tolerance in higher plants. Int. Rev. Cytol. 200, 1–46.

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Morimura S and Takahashi E 1977 Less involvement of pectin in the precipitation of aluminum in pea root. Plant Cell Physiol. 18, 325–335.

    CAS  Google Scholar 

  • McKendry A L., Tague D N and Somers D J 1996 Aluminum tolerance of 1BL.1RS and 1AL.1RS near-isolines in soft red winter wheat. Crop Sci. 36, 987–990.

    Google Scholar 

  • Miftahudin, Scoles G and Gustafson J 2002 AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor. Appl. Genet. 104, 626–631.

    CAS  Google Scholar 

  • Milla M, Butler E, Huete A, Wilson C, Anderson O and Gustafson J 2002 Expressed sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol. 130, 1706–1716.

    Article  CAS  PubMed  Google Scholar 

  • Milla M A R and Gustafson J P 2001 Genetic and physical characterization of chromosome 4DL in wheat. Genome 44, 883–892.

    Article  CAS  PubMed  Google Scholar 

  • Minella E and Sorrells M 1992 Aluminum Tolerance in Barley Genetic Relationships among Genotypes of Diverse Origin. Crop Sci. 32, 593–598.

    CAS  Google Scholar 

  • Miyasaka S, Bute J, Howell R and Foy C 1991 Mechanisms of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol. 96, 737–743.

    CAS  Google Scholar 

  • Miyasaka S C, Kochian L V, Shaff J E and Foy C D 1989 Mechanisms of aluminum tolerance in wheat. An investigation of geno-typic differences in rhizosphere pH, K+, and H+ transport and root-cell membrane potentials. Plant Physiol. 91, 1188–1196.

    CAS  Google Scholar 

  • Mullet J, Klein R and Klein P 2001 Sorghum bicolor — an important species for comparative grass genomics and a source of beneficial genes for agriculture. Curr. Opin. Plant Biol. 5, 118–121.

    Google Scholar 

  • Nguyen B, Brar D, Bui B, Nguyen T, Pham L and Nguyen H 2003 Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor. Appl. Genet. 106, 583–593.

    CAS  PubMed  Google Scholar 

  • Nguyen V, Burow M, Nguyen H, Le B, Le T and Paterson A 2001 Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor. Appl. Genet. 102, 1002–1010.

    CAS  Google Scholar 

  • Nguyen V, Nguyen B, Sarkarung S, Martinez C, Paterson A and Nguyen H 2002 Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol. Genet. Genomics 267, 772–780.

    CAS  PubMed  Google Scholar 

  • Nichol B E, Oliveira L A, Glass A D M and Siddiqi M Y 1993 The effects of aluminum on the influx of calcium, potassium, ammonium, nitrate, and phosphate in an aluminum-sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol. 101, 1263–1266.

    CAS  PubMed  Google Scholar 

  • Ninamango-Cardenas F, Guimaraes C, Martins P, Parentoni S, Carneiro N, Lopes M, Moro J and Paiva E 2003 Mapping QTLs for aluminum tolerance in maize. Euphytica 130, 223–232.

    CAS  Google Scholar 

  • Osawa H and Matsumoto H 2001 Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol. 126, 411–420.

    Article  CAS  PubMed  Google Scholar 

  • Papernik L, Bethea A, Singleton T, Magalhaes J, Garvin D and Kochian L 2001 Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212, 829–834.

    Article  CAS  PubMed  Google Scholar 

  • Papernik L A and Kochian L V 1997 Possible involvement of Al-induced electrical signals in Al tolerance in wheat. Plant Physiol. 115, 657–667.

    CAS  PubMed  Google Scholar 

  • Pellet D, Grunes D and Kochian L 1995 Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196, 788–795.

    CAS  Google Scholar 

  • Pellet D, Papernik L and Kochian L 1996 Multiple aluminumresistance mechanisms in wheat. Roles of root apical phosphate and malate exudation. Plant Physiol. 112, 591–597.

    CAS  PubMed  Google Scholar 

  • Piñeros M A and Kochian L V 2001 A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al (3+)-induced anion channels. Plant Physiol. 125, 292–305.

    PubMed  Google Scholar 

  • Piñeros M A, Magalhaes J V, Carvalho Alves V M and Kochian L V 2002 The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129, 1194–1206.

    PubMed  Google Scholar 

  • Piñeros M A and Tester M 1997 Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J. Exp. Bot. 48, 551–577.

    Google Scholar 

  • Piñeros M A and Tester M 1995 Characterization of a voltagedependent Ca2+-selective channel from wheat roots. Planta. 195, 478–488.

    Article  Google Scholar 

  • Piper P, Mahe Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P and Kuchler K 1998 The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17, 4257–4265.

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z 1992 Role of calcium in aluminum toxicity. New Phytol. 121, 499–513.

    CAS  Google Scholar 

  • Rengel Z and Elliott D C 1992 Mechanism of Al inhibition of net 43Ca2+ uptake by Amaranthus protoplasts. Plant Physiol. 98, 632–638.

    CAS  Google Scholar 

  • Rengel Z and Zhang W 2003 Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol. 159, 295–314.

    Article  CAS  Google Scholar 

  • Rhue R, Grogan C, Stockmeyer E and Everett H 1978 Genetic control of aluminum tolerance in corn. Crop Sci 18, 1063–1067.

    Google Scholar 

  • Richards K, Schott E, Sharma Y, Davis K and Gardner R 1998 Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116, 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Rincón M and Gonzales R 1992 Aluminum partitioning intact roots of aluminium-tolerant and aluminum-sensitive wheat (Triticum aestivum L.) cultivars. Plant Physiol. 99, 1021–1028.

    Google Scholar 

  • Ryan P, Delhaize E and Jones D 2001 Function and Mechanism of Organic Anion Exudation from Plant Roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Ryan P, DiTomaso J and Kochian L 1993 Aluminum toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot. 44, 437–446.

    CAS  Google Scholar 

  • Ryan P, Skerrett M, Findlay G, Delhaize E and Tyerman S 1997 Aluminum activates an anion channel in the apical cells of wheat roots. Proc. Natl. Acad. Sci. USA 94, 6547–6552.

    Article  CAS  PubMed  Google Scholar 

  • Ryan P R, Delhaize E and Randall P J 1995a Characterization of Al-stimulated efflux of malate from the apices of Altolerant wheat roots. Planta. 196, 103–110.

    Article  CAS  Google Scholar 

  • Ryan P R, Delhaize E and Randall P J 1995b Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust. J. Plant Physiol. 22, 531–536.

    CAS  Google Scholar 

  • Ryan P R and Kochian L V 1993 Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Triticum aestivum L.) differing in aluminum tolerance. Plant Physiol. 102, 975–982.

    CAS  PubMed  Google Scholar 

  • Ryan P R, Shaff J E and Kochian L V 1992 Aluminum toxicity in roots. Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum tolerant wheat cultivars. Plant Physiol. 99, 1193–1200.

    CAS  Google Scholar 

  • Saber N, Abdel-Moneim A and Barakat S 1999 Role of organic acids in sunflower tolerance to heavy metals. Biol. Plant Prague 42, 65–73.

    CAS  Google Scholar 

  • Sampson M, Clarkson D T and Davies D D 1965 DNA synthesis in aluminum-treated roots of barley. Science 148, 1476–1477.

    CAS  Google Scholar 

  • Sasaki M, Yamamoto Y and Matsumoto H 1997a Aluminum inhibits growth and stability of cortical microtubules in wheat (Triticum aestivum) roots. Soil Sci. Plant Nutr. 43, 469–472.

    CAS  Google Scholar 

  • Sasaki M, Yamamoto Y and Matsumoto H 1997b Early events induced by aluminum stress in elongating cells of wheat roots. Soil Sci. Plant Nutr. 43, 1009–1014.

    CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki E, Katsuhara M, Ryan P, Delhaize E, Matsumoto H, 2004 A gene encoding an aluminum-activated malate transporter segregates with aluminum tolerance in wheat. Plant J. (in press).

    Google Scholar 

  • Sawazaki E and Furlani P R 1987 Genetics of Aluminum Tolerance in Cateto Maize. Bragantia 46, 269–278.

    CAS  Google Scholar 

  • Schmohl N and Horst W J 2000 Cell wall pectin content modulates aluminum sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ. 23, 735–742.

    Article  CAS  Google Scholar 

  • Schöttelndreier M, Norddahl M, Strom L and Falkengren-Grerup U 2001 Organic acid exudation by wild herbs in response to elevated Al concentrations. Ann. Bot. 87, 769–775.

    Article  Google Scholar 

  • Schroeder J I, Schmidt C and Sheaffer J 1993 Identification of High-Affinity Slow Anion Channel Blockers and Evidence for Stomatal Regulation by Slow Anion Channels in Guard Cells. Plant Cell 5, 1831–1841.

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Rumsewicz M, Johnson K, Jones B, Gaspar Y and Bacic A 2002 Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol. 129, 1448–1463.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzerova K, Zelenkova S, Nick P and Opatrny Z 2002 Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol 43, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Shen R, Ma J, Kyo M and Iwashita T 2002 Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215, 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Shi B and Haug A 1990 Aluminum uptake by neuroblastoma cells. J. Neurochem. 55, 551–558.

    CAS  PubMed  Google Scholar 

  • Sibov S, Gaspar M, Silva M, Ottoboni L, Arruda P and Souza A 1999 Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses. Genome 42, 475–482.

    Article  CAS  Google Scholar 

  • Silva I, Smyth T, Moxley D, Carter T, Allen N and Rufty T 2000 Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol. 123, 543–552.

    Article  CAS  PubMed  Google Scholar 

  • Silva I, Smyth T, Raper C, Carter T and Rufty T 2001 Differential aluminium tolerance in soybean: An evaluation of the role of organic acids. Physiol Plant. 112, 200–210.

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D, Felle H and Horst W 1999 Impacts of aluminum on the cytoskeleton of the maize root apex, short-term effects on the distal part of the transition zone. Plant Physiol. 119, 1073–1082.

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Ezaki B, He Z H, Tong H, Qsawa H, Baluska F, Volkmann D and Matsumoto H 2003a Aluminum-induced gene expression and protein localization of a cell wallassociated receptor kinase in Arabidopsis. Plant Physiol. 132, 2256–2266.

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D and Matsumoto H 2000 Aluminum-induced 1→ 3beta-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants [In Process Citation]. Plant Physiol. 124, 991–1006.

    Article  CAS  PubMed  Google Scholar 

  • Sivaguru M and Horst W 1998 The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116, 155–163.

    Article  CAS  Google Scholar 

  • Sivaguru M, Pike S, Gassmann W and Baskin T 2003b Aluminum rapidly depolymerizes cortical rnicrotubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol. 44, 667–675.

    Article  CAS  PubMed  Google Scholar 

  • Smith H M S and Raikhel N V 1999 Protein targeting to the nuclear pore: what can we learn from plants? Plant Physiol. 119, 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi A and Matsumoto H 2001 Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol. Plant 112, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Kariuda M and Itoi H 1985 Blueing of sepal colour of Hydrangea macrophylla. Photochemistry 24, 2251–2254.

    CAS  Google Scholar 

  • Tang Y, Sorrells M, Kochian L and Garvin D 2000 Identification of RFLP markers linked to barley aluminum tolerance gene Alp. Crop Sci. 40, 778–782.

    CAS  Google Scholar 

  • Taylor G, McDonald-Stephens J, Hunter D, Bertsch P, Elmore D, Rengel Z and Reid R 2000 Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol. 123, 987–996.

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye M, Temple S, Allan D, Vance C and Samac D 2001 Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol. 127, 1836–1844.

    Article  CAS  PubMed  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M and Ranjeva R 1996 Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett. 393, 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Thuleau P, Ward J M, Ranjeva R and Schroeder J I 1994 Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J. 13, 2970–2975.

    CAS  PubMed  Google Scholar 

  • Vazquez M D, Poschenrieder C, Corrales I and Barcelo J 1999 Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety. Plant Physiol. 119, 435–444.

    Article  CAS  PubMed  Google Scholar 

  • Very A A and Davies J M 2000 Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc. Natl. Acad. Sci. USA 97, 9801–9806.

    Article  CAS  PubMed  Google Scholar 

  • von Uexküll H R, Mutert E, 1995 Global extent, development and economic impact of acid soils. In Plant-Soil Interactions at Low pH: Principles and Management Ed. R A Date. NJ.

    Google Scholar 

  • Wallace S U and Andersen I C 1984 Aluminum toxicity and DNA synthesis in wheat roots. Agron. J. 76, 5–8.

    CAS  Google Scholar 

  • Ware D, Jaiswal P, Ni J, Yap I, Pan X, Clark K, Teytelman L, Schmidt S, Zhao W, Chang K, Cartinhour S, Stein L and MeCouch S 2002 Gramene, a tool for grass genomics. Plant Physiol. 130, 1606–1613.

    Article  CAS  PubMed  Google Scholar 

  • Watt D 2003 Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J. Exp. Bot. 54, 1163–1174.

    Article  CAS  PubMed  Google Scholar 

  • World Soil Resources Report 90 2000 Land resource potential and constraints at regional and country levels.

    Google Scholar 

  • Wu P, Liao C, Hu B, Yi K, Jin W, Ni J and He C 2000 QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100, 1295–1303.

    CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi S, Rikiishi S and Matsumoto H 2002 Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 128, 63–72.

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi Y and Matsumoto H 2001 Lipid Peroxidation Is an Early Symptom Triggered by Aluminum, But Not the Primary Cause of Elongation Inhibition in Pea Roots. Plant Physiol. 125, 199–208.

    CAS  PubMed  Google Scholar 

  • Yang Z, Sivaguru M, Horst W and Matsumoto H 2000 Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycinemax). Physiol Plant. 110, 72–77.

    Article  CAS  Google Scholar 

  • Zhang W and Rengel Z 1999 Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust. J. Plant Physiol. 26, 401–409.

    CAS  Google Scholar 

  • Zhang W, Ryan P and Tyerman S 2001 Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol. 125, 1459–1472.

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Ma J and Matsumoto H 1998a Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol Plant. 103, 209–214.

    Article  CAS  Google Scholar 

  • Zheng S, Ma J and Matsumoto H 1998b High aluminum resistance in buckwheat: I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117, 745–751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon V. Kochian .

Editor information

Hans Lambers Timothy D. Colmer

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kochian, L.V., Piñeros, M.A., Hoekenga, O.A. (2005). The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. In: Lambers, H., Colmer, T.D. (eds) Root Physiology: from Gene to Function. Plant Ecophysiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4099-7_9

Download citation

Publish with us

Policies and ethics