Skip to main content

Summary

Packed bed bioreactors are a promising tool for tissue engineering applications that have not been fully utilised to date. They are capable of supporting various cell lines for long culture periods under low shear conditions, due to the immobilisation of cells within macroporous matrices. Various configurations have been designed that deal with the problems traditionally associated with immobilised cell cultures, such as non-ideal fluid flow and mass transport limitations. These have enabled good scale-up and superior productivity to alternative systems such as hollow-fibre reactors. Packed bed reactors are currently being employed in studies to develop bioartificial liver support systems (Morsiani et al. 2000; Shiba et al. 2003) but have also been used for the ex vivo expansion of bone marrow cells (Highfill et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al Rubeai, M., Rookes, S. and Emery, A. N. 1990. Studies of Cell Proliferation And Monoclonal Antibody Synthesis And Secretion In Alginate-Entrapped Hybridoma Cells. In: de Bont, J. A. M., Visser, J., Mattiasson, B., and Tramper, J. editors. Physiology of Immobilized Cells. Amsterdam: Elsevier Science Publishers. p181–188.

    Google Scholar 

  • Al Rubeai, M. and Spier, R.E. 1989. Quantitative cytochemical analysis of immobilised hybridoma cells. Appl Microbiol Biotechnol 31:430–433.

    Google Scholar 

  • Allen, J.W. and Bhatia, S.N. 2002. Improving the next generation of bioartificial liver devices. Seminars in Cell & Developmental Biology 13: 447–454.

    Article  CAS  Google Scholar 

  • Atkinson, B. and Mavituna, F. 1983. Biochemical Engineering and Biotechnology Handbook. London: Macmillan.

    Google Scholar 

  • Audet, J., Zandstra, P.W., Eaves, C.J. and Piret, J.M. 1998. Advances in hematopoietic stem cell culture. Current Opinion in Biotechnology 9:146–151.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J. E. and Ollis, D. F. 1986. Biochemical Engineering Fundamentals. New York: McGraw Hill Book Co.

    Google Scholar 

  • Banik, G.G. and Heath, C.A. 1995. Hybridoma growth and antibody production as a function of cell density and specific growth rate in perfusion culture. Biotechnol Bioeng. 48: 289–300.

    Article  CAS  Google Scholar 

  • Bohmann, A., Portner, R. and Markl, H. 1995. Performance of a membrane-dialysis bioreactor with a radial-flow fixed-bed for the cultivation of a hybridoma cell-line. Applied Microbiology and Biotechnology 43: 772–780.

    Article  PubMed  CAS  Google Scholar 

  • Bratch, K. 2000. The Development of a Bioartificial Liver Support System. The University of Birmingham.

    Google Scholar 

  • Bratch, K. and Al Rubeai, M. 2001. Culture of primary rat hepatocytes within a flat hollow fibre cassette for potential use as a component of a bioartificial liver support system. Biotechnology Letters 23: 137–141.

    Article  CAS  Google Scholar 

  • Cabral, J.M.S. 2001. Ex vivo expansion of hematopoietic stem cells in bioreactors. Biotechnology Letters 23: 741–751.

    Article  CAS  Google Scholar 

  • Catapano, G. 1996. Mass transfer limitations to the performance of membrane bioartificial liver support devices. International Journal of Artificial Organs 19: 18–35.

    PubMed  CAS  Google Scholar 

  • Chamuleau, R.A. 2002. Bioartificial liver support anno 2001. Metab Brain Dis 17: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Chresand, T.J., Gillies, R.J. and Dale, B.E. 1988. Optimum fiber spacing in a hollow fiber bioreactor. Biotechnol Bioeng. 32: 983–992.

    Article  Google Scholar 

  • Collins, P.C., Papoutsakis, E.T. and Miller, W.M. 1996. Ex vivo culture systems for hematopoietic cells. Current Opinion in Biotechnology 7: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Cong C., Chang Y., Deng J., Xiao C. and Su Z. 2001. A novel scale-up method for mammalian cell culture in packed-bed bioreactor. Biotechnology Letters 23: 881–885.

    Article  CAS  Google Scholar 

  • Drury, D.D., Dale, B.E. and Gillies, R.J. 1988. Oxygen transfer properties of a bioreactor for use with nuclear magnetic resonance spectrometer. Biotechnol Bioeng. 32: 966–974.

    Article  CAS  Google Scholar 

  • Ducommun, P., Ruffieux, P.-A. and Kadouri, A. 2001. Process Development In A Packed Bed Bioreactor. In: Linder-Olsson, E. editor. Animal Cell Technology: From Target to Market. Netherlands: Kluwer Academic Publishers p410–411.

    Google Scholar 

  • Ellis, L.C. 1991. Free radicals in tissue culture. Part IV. Effects on cells in culture. Art Sci 10: 1–5.

    Google Scholar 

  • Emery, A.N., Jan, D.C. and Al Rubeai, M. 1995. Oxygenation of intensive cell-culture system. Appl. Microbiol. Biotechnol. 43: 1028–1033.

    Article  PubMed  CAS  Google Scholar 

  • Fassnacht D., Rössing S, Singh R.P., Al Rubeai, M. and Pörtner R. 1999. Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology 30: 95–105.

    Article  CAS  Google Scholar 

  • Fassnacht, D. and Portner, R. 1999. Experimental and theoretical considerations on oxygen supply for animal cell growth in fixed-bed reactors. J. Biotechnol. 72: 169–184.

    Article  PubMed  CAS  Google Scholar 

  • Fogler, H. S. 1986. Elements of Chemical Reaction Engineering. New Jersey: Prentice-Hall. p. 632–668.

    Google Scholar 

  • Foy, B.D., Rotem, A., Toner, M., Tompkins, R.G. and Yarmush, M.L. 1994. A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design. Cell Transplant. 3: 515–527.

    PubMed  CAS  Google Scholar 

  • Highfill, J.G., Haley, S.D. and Kompala, D.S. 1996. Large-scale production of murine bone marrow cells in an airlift packed bed bioreactor. Biotechnology and Bioengineering 50: 514–520.

    Article  CAS  Google Scholar 

  • Hu, W.S., Friend, J.R., Wu, F.J., Sielaff, T., Peshwa, M.V., Lazar, A., Nyberg, S.L., Remmel, R.P. and Cerra, F.B. 1997. Development of a bioartificial liver employing xenogeneic hepatocytes. Cytotechnology 23: 29–38.

    Article  Google Scholar 

  • Hu, W.S. and Peshwa, M.V. 1991. Animal-cell bioreactors-recent advances and challenges to scale-up. Canadian Journal of Chemical Engineering 69: 409–420.

    CAS  Google Scholar 

  • Hu, Y.C., Kaufman, J., Cho, M.W., Golding, H. and Shiloach, J. 2000. Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system. Biotechnol. Prog. 16, 744–750.

    Google Scholar 

  • Jauregui, H.O., Chowdhury, N.R. and Chowdhury, J.R. 1996. Use of mammalian liver cells for artificial liver support. Cell Transplant. 5: 353–367.

    Article  PubMed  CAS  Google Scholar 

  • Kadouri, A. and Zipori D. 1989. Production of anti-leukemic factor from Stroma cells in a stationary bed reactor on a new cell support. In: Spier, R.E., Griffiths, J.B., Stephenne, J. and Rooy, P.J editors. Advances In Animal Cell Biology And Technology For Bioprocesses. Tiptree, Essex: Courier International Ltd. p. 327–330.

    Google Scholar 

  • Kalogerakis, N. and Behie, L.A. 1997. Oxygenation capabilities of basket-type bioreactors for microcarrier cultures of anchorage-dependent cells. Bioprocess Engineering 17: 151–156.

    Article  CAS  Google Scholar 

  • Kaufman, J., Wang, G., Zhang W, Valle M.A. and Shiloach, J. 2000. Continuous production and recovery of recombinant Ca2+ binding receptor from HEK 293 cells using perfusion through a packed bed bioreactor. Cytotechnology 33: 3–11.

    Article  CAS  Google Scholar 

  • Kennard, M.L. and Piret, J.M. 1994. Glycolipid membrane-anchored recombinant protein-production from cho cells cultured on porous microcarriers. Biotechnology and Bioengineering 44: 45–54.

    Article  CAS  Google Scholar 

  • Knight P. 1989. Hollow fiber bioreactors for mammalian cell culture. Bio/Technology 7: 459–461.

    Article  CAS  Google Scholar 

  • Kurosawa, H., Markl, H., Niebuhrredder, C. and Matsumura, M. 1991. Dialysis bioreactor with radialflow fixed-bed for animal-cell culture. Journal of Fermentation and Bioengineering 72: 41–45.

    Article  CAS  Google Scholar 

  • Lin, A.A., Kimura, R. and Miller, W.M. 1993. Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng. 42: 339–350.

    Article  CAS  Google Scholar 

  • Ljunggren, J. and Häggström, L. 1994. Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures. Biotechnol Bioeng. 44: 808–818.

    Article  CAS  Google Scholar 

  • Mancuso, A., Fernandes, E.J., Blanch, H.W. and Clarke, D.S. 1990. A nuclaer magnetic resonance technique for determining hybridoma cell concentration in hollow fibre bioreactors. Bio/Technology 8: 1282–1285.

    Article  PubMed  CAS  Google Scholar 

  • Maraninchi, D. 1993. The clinical consequences of hematological and nonhematological toxicity following bone-marrow transplantation and the possible impact of hematopoietic growth-factors. Bone Marrow Transplantation 11: 12–22.

    PubMed  Google Scholar 

  • McAdams, T.A., Miller, W.M. and Papoutsakis, E.T. 1996. Hematopoietic cell culture therapies.2. Cell culture considerations. Trends in Biotechnology 14: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • McTaggart, S. 2000. Retroviral Vector Production for Gene Therapy Applications. University of Birmingham.

    Google Scholar 

  • McTaggart, S. and Al Rubeai, M. 2000. Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 16: 859–865.

    Article  PubMed  CAS  Google Scholar 

  • Morsiani, E., Brogli, M., Galavotti, D., Pazzi, P., Puviani, A.C. and Azzena, G.F. 2002. Biologic liver support: Optimal cell source and mass. International Journal of Artificial Organs 25: 985–993.

    PubMed  CAS  Google Scholar 

  • Morsiani, E., Galavotti, D., Puviani, A.C., Valieri, L., Brogli, M., Tosatti, S., Pazzi, P. and Azzena, G. 2000. Radial flow bioreactor outperforms hollow-fiber modules as a perfusing culture system for primary porcine hepatocytes. Transplantation Proceedings 32: 2715–2718.

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Klieser, W.F. and Sutherland, R.M. 1982. Oxygen tensions in multicell spheroids of two cell lines. Br. J. Cancer 45: 256–264.

    PubMed  CAS  Google Scholar 

  • Neermann, J. and Wagner, R. 1996. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J. Cell Phys 166: 152–169.

    Article  CAS  Google Scholar 

  • Nielsen, L.K. 1999. Bioreactors for hematopoietic cell culture. Annu. Rev. Biomed. Eng 1: 129–152.

    Article  PubMed  CAS  Google Scholar 

  • Othmer, K. 1991. Encyclopedia of Chemical Technology. Wiley.

    Google Scholar 

  • Park S. and Stephanopoulos G. 1993. Packed bed bioreactor with porous ceramic beads for animal cell culture. Biotechnol. Bioeng. 41: 25–34.

    Article  CAS  Google Scholar 

  • Patzer, J.F. 2001. Advances in bioartificial liver assist devices. Ann. N. Y. Acad. Sci. 944: 320–333.

    PubMed  Google Scholar 

  • Piret, J.M. and Cooney, C.L. 1990. Mammalian cell and protein distributions in ulltrafiltration hollow-fiber bioreactors. Biotechnol. Bioeng. 36: 902–910.

    Article  CAS  Google Scholar 

  • Piret, J.M. and Cooney, C.L. 1991. Model of oxygen transport limitations in hollow fiber bioreactors. Biotechnol Bioeng. 37: 80–92.

    Article  CAS  Google Scholar 

  • Piret, J.M., Devens, D.A. and Cooney, C.L. 1991. Nutrient and metabolite gradients in mammalian-cell hollow fiber bioreactors. Canadian Journal of Chemical Engineering 69: 421–428.

    CAS  Google Scholar 

  • Pörtner, R., Bohmann, A., Ludemann, I. and Markl, H. 1994. Estimation of specific glucose uptake rates in cultures of hybridoma cells. J. Biotechnol 34: 237–246.

    Article  PubMed  Google Scholar 

  • Pörtner, R., Fassnacht, D. and Märkl, H. 1999. Immobilization of mammalian cells in fixed bed reactors. BIOforum International 4: 140–141.

    Google Scholar 

  • Preissmann, A., Wiesmann, R., Buchholz, R., Werner, R.G. and Noe, W. 1997. Investigations on oxygen limitations of adherent cells growing on macroporous microcarriers. Cytotechnology 24: 121–134.

    Article  CAS  Google Scholar 

  • Racher, A.J. and Griffiths, J.B. 1993. Investigation of parameters affecting a fixed bed bioreactor process for recombinant cell lines. Cytotechnology 13: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, M. 1998. Fluid Flow through a Packed Bed of Particles. In Introduction to Particle Technology pp. 81–85. Wiley.

    Google Scholar 

  • Rodrigues M.T.A., Vilaça P.R., Garbuio A., Takagi M., Barbosa Jr S., Léo P., Laignier N.S., Silva A.A.P. and Moro A.M. 1999. Glucose uptake rate as a tool to estimate hybridoma growth in a packed bed bioreactor. Bioprocess Engineering 21: 543–546.

    Article  CAS  Google Scholar 

  • Shatford, R.A., Nyberg, S.L., Meier, S.J., White, J.G., Payne, W.D., Hu, W.S. and Cerra, F.B. 1992. Hepatocyte function in a hollow fiber bioreactor-a potential bioartificial liver. Journal of Surgical Research 53: 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y., Ryu, D.D.Y. and Park S. 1992. Performance of mammalian cell culture bioreactor with a new impeller design. Biotechnol. Bioeng. 40: 260–270.

    Article  CAS  Google Scholar 

  • Shiba, Y., Koyama, T., Wang, C., Zhang, Q., Okamura, A., Aoki, S., Mukaiyama, T., Yang, D. and Kodama, M. 2003. Culture of porcine hepatocytes using radial flow bioreactor system. In: Yagasaki, K. Animal Cell Technology for Innovative Life Sciences. Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Smith, M.D., Smirthwaite, A.D., Cairns, D.E., Cousins, R.B. and Gaylor, J.D. 1996. Techniques for measurement of oxygen consumption rates of hepatocytes during attachment and post-attachment. Int. J. Artif. Organs 19: 36–44.

    PubMed  CAS  Google Scholar 

  • Spier, R.E. and Whiteside, J.P. 1976. The production of foot-and-mouth disease virus from BHK 21 C 13 cells grown on the surface of glass spheres. Biotechnol Bioeng. 18: 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Stange, J., Ramalov, W. and Mitzner, S. 1993. A new procedure for the removal of protein bound drugs and toxins. Transactions of the American Society for Artificial Internal Organs 39: 621–625.

    Google Scholar 

  • Stephanopoulos, G. and Tsiveriotis, K. 1989. The effect of intraparticle convection on nutrient transport in porous biological pellets. Chemical Engineering Science 44: 2031–2039.

    Article  CAS  Google Scholar 

  • Sussman, N.L., Gislason, G.T. and Kelly, J.H. 1994. Extracorporeal liver support. Application to fulminant hepatic failure. J. Clin. Gastroenterol. 18: 320–324.

    PubMed  CAS  Google Scholar 

  • Takagi, M., Kondo, H. and Yoshida, T. 2002. In vitro proliferation of primary rat hepatocytes expressing ureogenesis activity by coculture with STO cells. Journal of Bioscience and Bioengineering 94: 212–217.

    Article  PubMed  CAS  Google Scholar 

  • Tannock, I.F. 1972. Oxygen diffusion and the distribution of cellular radiosensitivity in tumours. Br. J. Radiol. 45: 515–524.

    PubMed  CAS  Google Scholar 

  • Thelwell, P.E. and Brindle K.M. 1999. Analysis of CHO-K1 cell growth in a fixed bed bioreactor using magnetic resonance spectroscopy and imaging. Cytotechnology 30, 121–132.

    Google Scholar 

  • Vaupel, P. 1977. Hypoxia in neoplastic tissue. Microvasc. Res. 13: 399–408.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G., Zhang, W., Jacklin, C., Freedman, D., Eppstein, L. and Kadouri, A. 1992. Modified CelliGen-packed bed bioreactors for hybridoma cell cultures. Cytotechnology 9: 41–49.

    PubMed  CAS  Google Scholar 

  • Warnock, J. N. 2003. Optimisation of retrovirus production systems for gene therapy applications. The University of Birmingham.

    Google Scholar 

  • Williams, S.N.O., Callies, R.M. and Brindle, K.M. 1997. Mapping of oxygen tension and cell distribution in a hollow-fiber bioreactor using magnetic resonance imaging. Biotechnology and Bioengineering 56: 56–61.

    Article  CAS  Google Scholar 

  • Yamaji, H. and Fukuda, H. 1992. Growth and death behavior of anchorage-independent animal-cells immobilized within porous support matrices. Applied Microbiology and Biotechnology 37: 244–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Warnock, J.N., Bratch, K., Al-Rubeai, M. (2005). Packed Bed Bioreactors. In: Chaudhuri, J., Al-Rubeai, M. (eds) Bioreactors for Tissue Engineering. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3741-4_4

Download citation

Publish with us

Policies and ethics