Skip to main content

PARP Inhibitors and Cancer Therapy

  • Chapter
Poly(ADP-Ribosyl)ation

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The compelling evidence for the role of poly(ADP-ribose) polymerase(s) (PARP) in the cellular reaction to genotoxic stress was the stimulus to develop inhibitors as therapeutic agents to potentiate DNA-damaging anticancer therapies. The earliest inhibitors, the benzamides, developed in the 1980s provided “proof of principle” evidence that such an approach was feasible but they lacked the potency and specificity for advanced preclinical evaluation. Over the last two decades potent PARP inhibitors have been developed using structure activity relationships (SAR) and crystal structure analysis. These approaches have identified key desirable features for potent inhibitor-enzyme interactions. The resulting PARP inhibitors are up to 1,000 times more potent than the classical benzamides. These novel potent inhibitors have helped define the therapeutic potential of PARP inhibition. They significantly enhance the in vitro cytotoxicity of DNA monofunctional alkylating agents e.g., temozolomide, topoisomerase I poisons and ionising radiation. PARP inhibitors increase the antitumour activity of these three classes of anticancer agents in vivo, in some cases resulting in complete tumour regression. On the basis of these extremely promising preclinical data, clinical trials with a PARP inhibitor, in combination with temozolomide, commenced in June 2003 in the UK. This trial will allow the evaluation of PARP inhibition as a therapeutic manoeuvre in cancer for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roitt IM. The inhibition of carbohydrate metabolism in ascites-tumour cells by ethyleneimines. Biochem J 1956; 63:300–307.

    PubMed  CAS  Google Scholar 

  2. Chambon P, Weill JD, Mandel P. Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 1963; 11:39–43.

    Article  PubMed  CAS  Google Scholar 

  3. Shall S. Experimental manipulation of the specific activity of poly (ADP-ribose) polymerase. J Biol Chem (Tokyo) 1975; 77:2.

    Google Scholar 

  4. Purnell MR, Whish WJD. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 1980; 185:775–555.

    PubMed  CAS  Google Scholar 

  5. Durkacz BW, Omidiji O, Gray DA et al. (ADP-ribose)n participates in DNA excision repair. Nature 1980; 283:593–6.

    Article  PubMed  CAS  Google Scholar 

  6. Mailam MK, Cleaver EJ. Inhibitors of poly (adenosine diphosphate-ribose) synthesis: Effect on other metabolic processes. Science 1984; 223:589–591.

    Article  Google Scholar 

  7. Milam KM, Thomas GH, Cleaver JE. Disturbances in DNA precursor metabolism associated with exposure to an inhibitor of poly(ADP-ribose) synthetase. Exp Cell Res 1986; 165:260–268.

    Article  PubMed  CAS  Google Scholar 

  8. Boike GM, Petru E, Sevin BU et al. Chemical enhancement of cisplatin cytotoxicity in a human ovarian and cervical cancer cell line. Gynecol Oncol 1990; 38:315–322.

    Article  PubMed  CAS  Google Scholar 

  9. Alaoui-Jamali M, Loubaba B-B, Robyn S et al. Effect of DNA-repair-enzyme modulators on cytotoxicity of L-phenylalanine mustard and cis-diaminedichloroplatinum(II) in mammary carcinoma cells resistant to alkylating drugs. Cancer Chemother Pharmacol 1994; 34:153–158.

    PubMed  CAS  Google Scholar 

  10. Griffin RJ, Curtin NJ, Newell DR et al. The rôle of inhibitors of poly(ADP-ribose) polymerase as resistance-modifying agents in cancer therapy. Biochimie 1995; 77:408–422.

    Article  PubMed  CAS  Google Scholar 

  11. Curtin NJ, Golding BT, Griffin RJ et al. New PARP inhibitors for chemo-and radio-therapy of cancer. In: deMurcia G, Shall S, eds. From DNA Damage and Stress Signalling to Cell Death: Poly ADP-Ribosylation Reactions. Oxford, New York: Oxford University Press, 2000:177–206.

    Google Scholar 

  12. Ding R, Smulson M. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: Influences on genomic stability, chromatin organization and carcinogen cytotoxicity. Cancer Res 1994; 54:4627–4634.

    PubMed  CAS  Google Scholar 

  13. Molinete M, Vermeulen W, Burkle A et al. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J 1993; 12:2109–2117.

    PubMed  CAS  Google Scholar 

  14. Kupper JH, van Gool L, Burkle A. Molecular genetic systems to study the rôle of poly(ADP-ribosyl)ation in the cellular response to DNA damage. Biochimie 1995; 77:450–455.

    Article  PubMed  CAS  Google Scholar 

  15. Menissier de Murcia J, Neidergang C, Trucco C et al. Requirement of poly(ADP-ribode) polymerase in recovery from DNA damage in mice and cells. PNAS USA 1997; 94:7303–7307.

    Article  Google Scholar 

  16. Masutani M, Nozaki T, Nakomoto K. The response of Parp knockout mice against DNA damageing agents. Mutation Res 2000; 462:159–166.

    Article  PubMed  CAS  Google Scholar 

  17. Trucco C, Oliver FJ, de Murcia G et al. DNA repair defect in poly (ADP-ribose) polymerse-deficient cell lines. Nucleic Acids Res 1998; 26:2644–2649.

    Article  PubMed  CAS  Google Scholar 

  18. Caldecott KW, Aoufouchi S, Johnson P et al. XRCC1 polypeptide interacts with DNA pol β and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular nick sensor in vitro. Nucleic Acids Res 1996; 24:4387–4394.

    Article  PubMed  CAS  Google Scholar 

  19. Caldecott K. XRCCI and DNA strand break repair. DNA Repair 2003; 2:955–969.

    Article  PubMed  CAS  Google Scholar 

  20. Masson M, Niedergang C, Schreiber V et al. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 1998; 18:3563–3571.

    PubMed  CAS  Google Scholar 

  21. Danzer F, de la Rubia G, Menissier-de Murcia J et al. Base excision repair is impaired in mammalian cell lines lacking poly(ADP-ribose) polymerase-1. Biochemistry 2000; 39:7559–7569.

    Article  Google Scholar 

  22. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992; 356:356–358.

    Article  PubMed  CAS  Google Scholar 

  23. Vodenicharov MD, Sallmann FR, Satoh MS et al. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res 2000; 28:3887–3896.

    Article  PubMed  CAS  Google Scholar 

  24. Shieh WM, Ame J-C, Wilson MV et al. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 1998; 273:30069–30072.

    Article  PubMed  CAS  Google Scholar 

  25. Ame J-C, Rolli V, Schreiber V et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 1999; 274:17860–17868.

    Article  PubMed  CAS  Google Scholar 

  26. Schreiber V, Ame J-C, Dolle P et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 2002; 277:23028–23036.

    Article  PubMed  CAS  Google Scholar 

  27. Menissier de Murcia J, Ricoul M, Tartier L et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 2003; 22:2255–2263.

    Article  Google Scholar 

  28. Li J-H, Zhang J. PARP inhibitors. IDrugs 2001; 4:804–812.

    PubMed  CAS  Google Scholar 

  29. Cosi C. New inhibitors of poly(ADP-ribose) polymerase and their potential therapeutic targets. Expert Opin Ther Patents 2002; 12:1047–1071.

    Article  CAS  Google Scholar 

  30. Southan GJ, Szabo C. Poly(ADP-ribose) polymerase inhibitors. Current Med Chem 2003; 10:321–340.

    CAS  Google Scholar 

  31. Banasik M, Komura H, Shimoyama M et al. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 1992; 267:1569–1575.

    PubMed  CAS  Google Scholar 

  32. Suto MJ, Turner WR, Arundel-Suto CM et al. Dihydroisoquinolines: The design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Design 1991; 7:107–117.

    Google Scholar 

  33. Arundel-Suto CM, Scavone SV, Turner WR et al. Effects of PD128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray induced cellular recovery processes in Chinese hamster V79 cells. Radiation Res 1991; 126:367–371.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin RJ, Pemberton LC, Rhodes D et al. Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). Anticancer Drug Design 1995; 10:507–514.

    CAS  Google Scholar 

  35. Griffin RJ, Srinivasan S, White AW et al. Novel benzimidazole and quinazolinone inhibitors of the DNA repair enzyme, poly (ADP-ribose)polymerase. Pharmaceutical Sciences 1996; 2:43–47.

    CAS  Google Scholar 

  36. Griffin RJ, Srinivasan S, Bowman K et al. Resistance-modifying agents. 5. Synthesis and biological properties of quinazoline inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). J Med Chem 1998; 41:5247–5256.

    Article  PubMed  CAS  Google Scholar 

  37. Bowman KJ, White A, Golding BT et al. Potentiation of anticancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors, NU1025 and NU1064. Br J Cancer 1998; 78:1269–1277.

    PubMed  CAS  Google Scholar 

  38. White AW, Almassy R, Calvert AH et al. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J Med Chem 2000; 43:4084–4097.

    Article  PubMed  CAS  Google Scholar 

  39. Delaney CA, Wang LZ, Kyle S et al. Potentiation of temozolomide and topotecan growth inhibition and cytotoxicity by novel poly(adenosine diphosphoribose) polymerase inhibitors in a panel of human tumor cell lines. Clin Cancer Res 2000; 6:2860–2867.

    PubMed  CAS  Google Scholar 

  40. Ruf A, Menissier de Murcia J, de Murcia G et al. Structure of the catalytic fragment of poly(ADP-ribose) polymerase from chicken. Proc Natl Acad Sci USA 1996; 93:7481–7485.

    Article  PubMed  CAS  Google Scholar 

  41. Ruf A, de Murcia GM, Schulz G. Inhibitor and NAD+ binding to Poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 1998; 57:3893–3900.

    Article  Google Scholar 

  42. Almassy R, Bowman K, Calvert AH et al. The identification of novel potent 2-phenylbenzimidazole-4-carboxamide inhibitors of poly(ADP-ribose) polymerase (PARP). Proc Amer Assoc Cancer Res 1998; 39:222.

    Google Scholar 

  43. Canan Koch SS, Thoresen LH, Tikhe JG et al. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: Design, synthesis, and X-ray Cocrystal structure. J Med Chem 2002; 45:4961–4974.

    Article  PubMed  Google Scholar 

  44. Skalitzky DJ, Marakovits JT, Maegley KA et al. Tricyclic benzimidazoles as potent PARP-1 inhibitors. J Med Chem 2003; 46:210–213.

    Article  PubMed  CAS  Google Scholar 

  45. Calabrese CR, Batey MA, Thomas HD et al. Identification of potent nontoxic poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors: Chemopotentiation and pharmacological studies. Clin Can Res 2003; 9:2711–2718.

    CAS  Google Scholar 

  46. Calabrese CR, Almassy R, Barton S et al. Preclinical evaluation of a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, AG14361, with significant anticancer chemo-and radio-sensitization activity. JNCI 2004; 96:56–67.

    PubMed  CAS  Google Scholar 

  47. Marsischky GT, Wilson BA, Collier RJ. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. J Biol Chem 1995; 270:3247–54.

    Article  PubMed  CAS  Google Scholar 

  48. Bernges F, Zeller WJ. Combination effects of poly(ADP-ribose) polymerase inhibitors and DNA damaging agents in ovarian tumor cell lines — with special reference to cisplatin. J Cancer Res Clin Oncol 1996; 122:665–670.

    Article  PubMed  CAS  Google Scholar 

  49. Weichselbaum RR, Little JB. The differential response of human tumours to fractionated radiation may be due to a post-irradiation repair process. Br J Cancer 1982; 46:532–7.

    PubMed  CAS  Google Scholar 

  50. Barendsen GW, Van Bree C, Franken NAP. Importance of cell proliferative state and potentially lethal damage repair on radiation effectiveness: Implications for combined tumor treatments (Review). Int J Oncol 2001; 19:247–56.

    PubMed  CAS  Google Scholar 

  51. Weltin D, Holl V, Hyun JW et al. Effects of treatments combining 6(5H)-phenanthridinone, a new poly(ADP-ribose)polymerase inhibitor, and anticancer agents upon murine and tumour cell lines. Proc Am Assoc Cancer Res 1997; 38:1485.

    Google Scholar 

  52. Schlicker A, Peschke P, Burkle A et al. 4-Amino-1,8-naphthalimide: A novel inhibitor of poly(ADP-ribose) polymerase and radiation sensitizer. Int J Radiat Biol and Related Studies in Phys Chem and Med 1999; 75:91–100.

    Article  CAS  Google Scholar 

  53. Benjamin RC, Gill DM. Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA: Comparison of DNA molecules containing different types of strand breaks. J Biol Chem 1980; 255:10502–10508.

    PubMed  CAS  Google Scholar 

  54. Boulton S, Kyle S, Durkacz BW. Interactive effects of poly(ADP-ribose) polymerase and DNA-dependent protein kinase on cellular responses to DNA damage. Carcinogenesis (Lond) 1999; 20:199–203.

    Article  PubMed  CAS  Google Scholar 

  55. Ruscetti T, Lehnert BE, Halbrook J et al. Stimulation of the DNA-dependet protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 1998; 273:14461–14467.

    Article  PubMed  CAS  Google Scholar 

  56. Jackson SP. Sensing and repairing DNA double strand breaks. Carcinogenesis (Lond) 2002; 23:687–696.

    Article  PubMed  CAS  Google Scholar 

  57. Veuger SJ, Curtin NJ, Richardson CJ et al. Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 2003; 63:6008–6015.

    PubMed  CAS  Google Scholar 

  58. Fernet M, Ponette V, Deniaud-Alexandre E et al. Poly(ADP-ribose) polymerase, a major determinant of early cellular response to ionising radiation. Int J Radiat Biol 2000; 76:1621–1624.

    Article  PubMed  CAS  Google Scholar 

  59. Denny BJ, Wheelhouse RT, Stevens MFG et al. NMR and molecular modeling investigation of the mechanism of activation of the antitumour drug temozolomide and its interaction with DNA. Biochemistry 1994; 33:9045–9051.

    Article  PubMed  CAS  Google Scholar 

  60. Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res 2002; 45:73–85.

    Article  PubMed  CAS  Google Scholar 

  61. Boulton S, Pemberton LC, Porteous JK et al. Potentiation of temozolomide cytotoxicity: A comparative study of the biological effects of poly(ADP-ribose) polymerase inhibitors. Br J Cancer 1995; 72:849–856.

    PubMed  CAS  Google Scholar 

  62. Miknyoczki SJ, Jones-Bolin S, Prichard S. Chemopotentiation of temozlomide, irinotecan and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. 2003; 2:371–382.

    CAS  Google Scholar 

  63. Tentori L, Leonetti C Scarsella et al. Systemic administration of GPI 15427, a novel poly(ADP-ribose) polymerase-1 inhibitor, increases the antitumour activity of temozolomide against intracranial melanoma, glioma and lymphoma. Clin Cancer Res 2003; 9:5370–5379.

    PubMed  CAS  Google Scholar 

  64. Liu L, Markowitz S, Gerson SL. Mismatch repair mutations overide alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res 1996; 56:5375–5379.

    PubMed  CAS  Google Scholar 

  65. Friedman HS, McLendon RE, Kerby T et al. DNA mismatch repair and O-6-alkylguanine-DNA alkyltransferase analysis and response to temodal in newly diagnosed malignant glioma. J Clin Oncol 1998; 16:3851–3857.

    PubMed  CAS  Google Scholar 

  66. Modrich P, Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Ann Rev Biochem 1996; 65:101–133.

    Article  PubMed  CAS  Google Scholar 

  67. Herman JG, Uma A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. PNAS 1998; 95:6870–6875.

    Article  PubMed  CAS  Google Scholar 

  68. Wedge SR, Porteus JK, May BL et al. Potentiation of temozolomide and BCNU cytotoxicity by O6-benzylguanine: A comparative study in vitro. Br J Cancer 1996; 73:482–490.

    PubMed  CAS  Google Scholar 

  69. Liu l, Taverna P, Whitacre CM et al. Pharmacological disruption of base excision repair sensitizes mismatch repair-deficient and-proficient colon cancer cells to methylating agents. Clin Cancer Res 1999; 5:2908–2917.

    PubMed  CAS  Google Scholar 

  70. Tentori L, Turriziani M, Franco D et al. Treatment with temozolomide and poly(ADP-ribose) polymerase inhibitors induces early apoptosis and increases base excision repair gene transcripts in leukaemic cells resistant to triazine compounds. Leukemia 1999; 13:901–909.

    Article  PubMed  CAS  Google Scholar 

  71. Curtin NJ, Wang L-Z, Yiakouvaki A et al. Novel PARP-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair deficient cells. Clin Cancer Res 2004; 10:881–889.

    Article  PubMed  CAS  Google Scholar 

  72. Kaufmann SH, Charron M, Burke PJ et al. Changes in topoisomerase I levels and localisation during myeloid maturation in vitro and in vivo. Cancer Res 1995; 55:1255–1260.

    PubMed  CAS  Google Scholar 

  73. Pommier YM, Leteurtre F, Fesen MR et al. Cellular determinants of sensitivity and resistance to DNA topoisomerase inhibitors. Cancer Invest 1994; 12:530–54.

    Article  PubMed  CAS  Google Scholar 

  74. Mattern MR, Mong S-M, Bartus HF et al. Relationship between the intracellular effects of camptothecin and the inhibition of DNA topoisomerase I in cultured L1210 cells. Cancer Res 1987; 47:1793–1798.

    PubMed  CAS  Google Scholar 

  75. Bowman KJ, Newell DR, Calvert AH et al. Differential effects of the poly(ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity. Br J Cancer 2001; 84:106–112.

    Article  PubMed  CAS  Google Scholar 

  76. Ferro AM, Olivera BM. Poly (ADP-ribosylation) of DNA topoisomerase I from calf thymus. J Biol Chem 1984; 259:547–554.

    PubMed  CAS  Google Scholar 

  77. Krupitza G, Cerutti P. ADP ribosylation of ADPR-transferase and topoisomerase I in intact mouse epidermal cells JB6. Biochemistry 1989; 28:2034–2040.

    Article  PubMed  CAS  Google Scholar 

  78. Bauer PI, Chen H-J, Kenesi E et al. Molecular interactions between poly(ADP-ribose) polymerase (PARP-1) and topoisomerase I: Identification of topology of binding. FEBS Letts 2001; 506:239–242.

    Article  CAS  Google Scholar 

  79. Caldecott K, Jeggo P. Cross-sensitivity of γ-ray-sensitive hamster mutants to cross-linking agents. Mutat Res 1991; 255:111–121.

    PubMed  CAS  Google Scholar 

  80. Smith L, Willmore E, Hostomsky Z et al. The role of poly(ADP-ribose) polymerase in the cellular response to topoisomerase I poisons. Eur J Cancer 2002; 38(Suppl 7):S69 (214).

    Google Scholar 

  81. Plo I, Liao Z-Y, Barcelo JM et al. Association of XRCC1 and tyrosyl DNA phosphodiesterase Tdp 1 for the repair of topoisomerase I-mediated DNA lesions. DNA Repair 2003; 2:1087–1100.

    Article  PubMed  CAS  Google Scholar 

  82. Park S-Y, Lam W, Cheng Y-c. X-ray cross-complementing gene 1 protein plays an important role in camptothecin resistance. Cancer Res 2002; 62:459–465.

    PubMed  CAS  Google Scholar 

  83. Horsman MR. Nicotinamide and other benzamide analogues as agents for overcoming hypoxic cell radiation resistance in tumours (a review). Acta Oncologica 1995; 34:571–587.

    Article  PubMed  CAS  Google Scholar 

  84. Thomas CD, Stern S, Chaplin DJ et al. Transient perfusion and radiosensitizing effect after nicotinamide, carbogen, and perflubron emulsion administration. Radiother Oncol 1996; 39:235–241.

    Article  PubMed  CAS  Google Scholar 

  85. Kaanders JHAM, Bussink J, van der Kogel AJ. ARCON: A novel biology-based approach in radiotherapy. Lancet Oncol 2002; 3:728–37.

    Article  PubMed  Google Scholar 

  86. Leopold WR, Sebolt-Leopold JS. Chemical approaches to improved radiotherapy. In: Valeriote FA, Corbett TH, Baker LH, eds. Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development. Boston: Kluwer, 1990:179–196.

    Google Scholar 

  87. Horsman MR, Brown DM, Hirst DG et al. Changes in the response of the RIF-1 tumour to melphalan in vivo induced by inhibitors of nuclear ADP-ribosyl transferase. Br J Cancer 1986; 53:247–254.

    PubMed  CAS  Google Scholar 

  88. Tentori L, Leonetti C, Scarsella M et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing haematological malignancy at the central nervous system site. Blood 2002; 99:2241–4.

    Article  PubMed  CAS  Google Scholar 

  89. Hans M-A, Muller M, Meyer-Ficca M et al. Overexpression of dominant negative PARP interferes with tumour formation of HeLa cells in nude mice. Evidence for increased tumour apoptosis in vivo. Oncogene 1999; 18:7010–7015.

    Article  PubMed  CAS  Google Scholar 

  90. Burkle A, Schreiber Dantzer F et al. Biological significance of poly(ADP-ribosylation) reactions: Molecular and genetic approaches. In: deMurcia G, Shall S. From DNA Damage and Stress Signalling to Cell Death: Poly ADP-Ribosylation Reactions. Oxford, New York: Oxford University Press, 2000:80–124.

    Google Scholar 

  91. Chan G, Pan Q-c. Potentiation of the antitumour activity of cisplatin in mice by 3-aminobenzamide and nicotinamide. Cancer Chemother Pharmacol 1988; 22:303–307.

    Article  Google Scholar 

  92. Racz I, Tory K, Gallyas Jr F et al. BGP-15 — a novel poly(ADP-ribose) polymerase inhibitor — protects against nephrotoxicity of cisplatin without compromising its antitumour activity. 2002; 63:1099–1111.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Curtin, N.J. (2006). PARP Inhibitors and Cancer Therapy. In: Poly(ADP-Ribosyl)ation. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36005-0_18

Download citation

Publish with us

Policies and ethics