Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 567))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.C. Mertani and G. Morel, In situ gene expression of growth hormone (GH) receptor and GH binding protein in adult male rat tissues. Mol Cell Endocrinol, 109, 47–61 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. S.R. Edmonson, G.A. Werther, A. Russell, D. LeRoith and C.T. Roberts Jr, Localization of growth hormone receptor/binding protein messenger ribonucleic acid (mRNA) during rat fetal development: relationship to insulin-like growth factor-I mRNA. Endocrinology, 136, 4602–4609 (1995).

    Article  Google Scholar 

  3. M. Ballesteros, K.C. Leung, R.J. Ross, T.P. Iismaa, and K.K. Ho, Distribution and abundance of messenger ribonucleic acid for growth hormone receptor isoforms in human tissues. J Clin Endocrinol Metab 85, 2865–2871 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. C.A. Bondy, H. Werner, C.T. Roberts and D. LeRoith, Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46, 909–923 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. A.G. Schuller, J.W. van Neck, D.J. Lindenbergh-Kortleve, C. Groffen, I. de Jon, E.C. Zwarthoff and S.L. Drop, Gene expression of the IGF binding proteins during post-implantation embryogenesis of the mouse; comparison with the expression of IGF-I and II and their receptors in rodent and human. Adv Exp Med Biol, 343, 267–277 (1993).

    PubMed  CAS  Google Scholar 

  6. H.M. Evans and L.A. Long, The effect of the anterior lobe of the hypophysis administered intraperitoneally upon growth and maturity and estrous cycles of the rat. Anat Record 21, 62 (1921).

    Google Scholar 

  7. C.H. Li and H.M. Evans, The isolation of pituitary growth hormone. Science, 99, 183–185 (1944).

    CAS  PubMed  Google Scholar 

  8. W.L. Miller and N.L. Eberhardt, Structure and evolution of the growth hormone gene family. Endocr Rev, 4, 97–130 (1983).

    PubMed  CAS  Google Scholar 

  9. P.H. Seeburg, J. Shine, J.A. Martial, J.D. Baxter and H.M. Goodman, Nucleotide sequence and amplification in bacteria of the structural gene for rat growth hormone. Nature, 270, 486–494 (1977).

    Article  PubMed  CAS  Google Scholar 

  10. D. Owerbach, W.J. Rutter, J.A. Martial, J.D. Baxter and T.B. Shows, Genes for growth hormone, chorionic somatomammotropin and growth hormone-like gene on chromosome 17 in humans. Science, 209, 289–294 (1980).

    PubMed  CAS  Google Scholar 

  11. E.Y. Chen, Y.C. Liao, D.H. Smith, H.A. Barrera-Saldana, R.E. Gelinas and P.H. Seeburg, The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics, 4, 479–97 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. S.L. Asa, K. Kovacs, F.A. Laszlo, I. Domokos and C. Ezrin, Human fetal adenohypophysis: histologic and immunocytochemical analysis. Neuroendocrinology, 43, 308–316 (1986).

    PubMed  CAS  Google Scholar 

  13. J.W. Finkelstein, T.F. Anders, E.J. Sachar, H.P. Roffwarg and L.D. Hellman LD, Behavioural state, sleep stage and growth hormone levels in human infants. J Clin Endocrinol Metab, 32, 368–371 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. A. Chatelain, J.P. Dupouy, and M.P. Dubois, Ontogenesis of cells producing polypeptide hormones (ACTH, MSH, LPH, GH, prolactin) in the fetal hypophysis of the rat: influence of the hypothalamus. Cell Tissue Res 196, 409–427 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. L.S. Frawley, J.P. Hoeffler and F.R. Boockfor, Functional maturation of somatotropes in fetal rat pituitaries analysis by reverse hemolytic plaque assay. Endocrinology, 116, 2355–2360 (1985).

    PubMed  CAS  Google Scholar 

  16. C.A. Birge, G.T. Peake, I.K. Mariz and W.H. Daughaday, Radioimmunoassyable growth hormone in the rat pituitary gland: effects of age, sex and hormonal state. Endocrinology, 81, 195–204 (1967).

    PubMed  CAS  Google Scholar 

  17. O.G.P. Isaksson, J-O. Jansson, R.G. Clark and I. Robinson, Significance of the secretory pattern of growth hormone. NIPS, 1, 44–47 (1986).

    CAS  Google Scholar 

  18. H.K. Choi and D.J. Waxman, Plasma growth hormone pulse activation of hepatic JAK-STAT5 signaling: Developmental regulation and role in male-specific liver gene expression. Growth Horm IGF Res, 141, 3245–3255 (2000).

    CAS  Google Scholar 

  19. J-O. Jansson, S. Edén and O. Isaksson, Sexual dimorphism in the control of growth hormone secretion. Endocr Rev, 6, 128–150 (1985).

    PubMed  CAS  Google Scholar 

  20. S.M. Pincus, E.F. Gevers, I.C. Robinson, G. vanden Berg, F. Roelfsema, M.L. Hartman and J.D. Veldhuis, Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol, 270, E107–115 (1996).

    PubMed  CAS  Google Scholar 

  21. A.W. Heatherington and S.W. Ranson, Hypothalamic lesions and adiposity in the rat. Anat Rec, 78, 149, (1940).

    Article  Google Scholar 

  22. S. Reichlin, Growth hormone content of the pituitaries from rats with hypothalamic lesions. Endocrinology, 69, 225–230, (1961).

    PubMed  CAS  Google Scholar 

  23. L.A. Frohman, L.L. Bernardis and K.L. Kant, Hypothalamic stimulation of growth hormone secretion. Science, 162, 580–582 (1968).

    PubMed  CAS  Google Scholar 

  24. P. Brazeau, W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier and R. Guillemin, Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 179, 77–79 (1973).

    PubMed  CAS  Google Scholar 

  25. L._ Pradayrol, H. Jörnvall, V. Mutt and V. Ribet, N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett, 109, 55–58 (1980).

    Article  PubMed  CAS  Google Scholar 

  26. F. Esch, P. Bóhlen, N. Ling, R. Benoit, P. Brazeau and R. Guillemin, Primary structure of ovine hypothalamic somatostatin-28 and somatostatin-25. Proc Natl Acad Sci (USA), 77, 6827–6831 (1980).

    Article  PubMed  CAS  Google Scholar 

  27. A.V. Schally, W-Y. Huang, R.C.C. Chang, A. Arimura, T.W. Redding, R.P. Millar, M.W. Hunkapiller and L.E. Hood, Isolation and structure of pro-somatostatin: a putative somatostatin precursor from pig hypothalamus. PNAS, 77, 4489–4493 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. H.H. Zingg and Y.C. Patel, Biosynthesis of immunoreactive somatostatin by hypothalamic neurons in culture. J Clin Invest, 70, 1101–1109 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. R.A. Steiner, J.K. Stewart, J. Barber, D. Koerker, C.J. Goodner, A. Brown, P. Illner and C.C. Gale, Somatostatin: A physiological role in the regulation of growth hormone secretion in the adolescent male baboon. Endocrinology, 102, 1587–1594 (1978).

    PubMed  CAS  Google Scholar 

  30. G.S. Tannenbaum, J. Epelbaum, E. Colle, P. Brazeau and J.B. Martin, Antiserum to somatostatin reverses starvation-induced inhibition of growth hormone but not insulin secretion. Endocrinology, 102, 1909–1914, (1978).

    PubMed  CAS  Google Scholar 

  31. K. Ishikawa, Y. Taniguchi, K. Kurosumi, M. Suzuki and M. Shinoda, Immunohistochemical identification of somatostatin-containing neuron projections to the median eminence of the rat. Endocrinology, 121, 94–97 (1987).

    PubMed  CAS  Google Scholar 

  32. J.O. Willoughby and J.B. Martin, Pulsatile growth hormone secretion: inhibitory role of medial proptic area. Brain Res, 148, 240–244, (1978).

    Article  PubMed  CAS  Google Scholar 

  33. R. Guillemin, P. Brazeau, P. Böhlen, F. Esch, N. Ling and W.B. Wehrenberg, Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science, 218, 585–587 (1982).

    PubMed  CAS  Google Scholar 

  34. J. Rivier, J. Spiess, M. Thorner and W. Vale, Characterization of a growth hormone-releasing factor from a human pancreatic islet tumor. Nature, 300, 276–278 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. B. Bloch, R.C. Gaillard, P. Brazeau, H.D. Lin and N. Ling, Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Pept, 8, 21–31, (1984).

    Article  PubMed  CAS  Google Scholar 

  36. P.E. Sawchenko, L.W. Swanson, J. Rivier and W.W. Vale, The distribution of growth hormone-releasing factor (GRF) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GRF. J Comp Neurol, 237, 100–115, (1985).

    Article  PubMed  CAS  Google Scholar 

  37. J. Spiess, J. Rivier and W. Vale, Characterization of rat hypothalamic growth hormona-releasing factor. Nature, 303, 532–535 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. K.E. Mayo, G.M. Cerelli, M.G. Rosenfeld and R.M. Evans, Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone-releasing factor. Nature, 314, 464–467, (1985).

    Article  PubMed  CAS  Google Scholar 

  39. P.M. Plotsky and W. Vale, Patterns of growth hormone-releasing factor and somatostatin secretion into the hypophysial-portal circulation of the rat. Science, 230, 461–463, (1985).

    PubMed  CAS  Google Scholar 

  40. W. Vale, J. Vaughan, G. Yamamoto, J. Spiess and J. Rivier, Effects of synthetic human pancreatic (tumor) GH releasing factor and somatostatin, triiodothyronine and dexamethasone on GH secretion in vitro. Endocrinology, 112, 1553–1555 (1983).

    PubMed  CAS  Google Scholar 

  41. P. Brazeau, N. Ling, F. Esch, P. Bohlen, C. Mougin and G. Guillemin, Somatocrinin (growth hormone releasing factor) in vitro bioactivity; Ca++ involvement, cAMP mediated action and additivity of effect with PGE2. Biochem Biophys Res Commun, 109, 588–594 (1982).

    Article  PubMed  CAS  Google Scholar 

  42. P. Zeitler, L. Vician, J.A. Chowen-Breed, J. Argente, G.S. Tannenbaum, D.K. Clifton and R.A. Steiner, Regulation of somatostatin and growth hormone-releasing hormone gene expression in the rat brain. Metabolism, 39, 46–49 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. K.A. Burton, E.B. Kabigting, D.K. Clifton and R.A. Steiner, Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology, 131, 958–963 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. S. Minami, J. Kamegai, H. Sugihara, N. Suzuki and I. Wakabayashi, Growth hormone inhibits its own secretion by acting on the hypothalamus through its receptors on neuropeptide Y neurons in the arcuate nucleus and somatostatin neurons in the periventricular nucleus. Endocr J, 45, S19–26 (1998).

    PubMed  CAS  Google Scholar 

  45. Y.Y. Chan, R.A. Steiner and D.K. Clifton, Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology, 137, 1319–1325 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. J.F. Bazan, Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci (USA), 87, 6934–6938 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. J. Finidori and P.A. Kelly, Cytokine receptor signaling through novel families of transducer molecules: Janus kinases and signal transducers and activators of transcription. J Endocrinol, 147, 11–23 (1995).

    PubMed  CAS  Google Scholar 

  48. B. Duriez, M.L. Sobrier, P. Duquesnoy, M. Tixier-Boichard, E. Decuypere, G. Coquerelle, M. Zeman, M. Goossens and S. Amselem, A naturally occurring growth hormone receptor mutation: in vivo and in vitro evidence for the functional importance of the WS motif common to all members of the cytokine receptor superfamily. Mol Endocrinol, 7, 806–814 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. A.M. DeVos, M. Ultsch and A.A. Kossiakoff, Human growth hormone and the cellular domain of tissue plasminogen activgator at 24-A resolution. Science, 255, 306–312 (1992).

    CAS  Google Scholar 

  50. M. Murakami, M. Narazaki, M. Hibi, H. Yawata, K. Yasukawa, M. Hamaguchi, T. Taga and T. Kishimoto, Critical cytoplasmic region of the interleukin 6 signal transducer gpl30 is conserved in the cytokine receptor family. Proc Natl Acad Sci (USA), 88, 11349–11353 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. K.C. Leung, N. Doyle, M. Ballesteros, M.J. Waters, K.K. Ho, Insulin regulation of human hepatic growth hormone receptors: divergent effects on biosynthesis and surface translocation. J Clin Endocrinol Metab, 85, 4712–4720 (2000).

    Article  PubMed  CAS  Google Scholar 

  52. K. He, X. Wang, J. Jiang, R. Guan, K.E. Bernstein, P.P. Sayeski and S.J. Frank, Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol Endocrinol, 17, 2211–2227 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. Y. Zhang, J. Jiang, R.A. Black, G. Baumann and S.J. Frank, Tumor necrosis factor-alpha converting enzyme (TACE) is a growth hormone binding protein (GHBP) sheddase: the metalloprotease (TACE/ADAM-17) is critical for (PMA-induced) GH receptor proteolysis and GHBP generation. Endocrinology, 141, 4342–4348 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. W.R. Baumbach, D.L. Horner and J.S. Logan, The growth hormone-binding protein in rat serum is an alternatively spliced form of the rat growth hormone receptor. Genes Dev, 3, 1199–1205 (1989).

    PubMed  CAS  Google Scholar 

  55. G. Baumann, Growth hormone binding to a circulating receptor fragment the concept of receptor shedding and receptor splicing. Exp Clin Endocrinol Diabet, 103, 2–6 (1995).

    CAS  Google Scholar 

  56. J. Gent, P. van Kerkhof, M. Roza, G. Bu and G.J. Strous, Ligand independent growth hormone receptor dimerization occurs in the endoplasmic reticulum and is required for ubiquitin system-dependent endocytosis. Proc Natl Acad Sci (USA), 99, 9858–9863 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. M.J. Waters, S.W. Rowlinson, R.W. Clarkson, C.M. Chen, P.E. Lobie, G. Norstedt and S. Bastiras, Signal transduction by the growth hormone receptor. Proc Soc Exp Biol Med, 206, 216–220 (1994).

    PubMed  CAS  Google Scholar 

  58. J.A. Wells, B.C. Cunningham, G. Fuh, H.B. Lowman, S.H. Bass, M.G. Mulkerrin, M. Ultsch and A.M. deVos, The molecular basis for growth hormone receptor interactions. Rec Prog Horm Res, 48, 253–275 (1993).

    PubMed  CAS  Google Scholar 

  59. P.A. Harding, X. Wang, S. Okada, W.Y. Chen, W. Wan and J.J. Kopchick, Growth hormone (GH) and a GH antagonist promote GH receptor dimerization and internalization. J Biol Chem, 271, 6708–6712 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. G. Fuh, B.C. Cunningham, R. Fukunaga, S. Nagata, D.V. Goeddel and J.A. Wells, Rational design of potent antagonists to the human growth hormone receptor. Science, 256, 1677–1680 (1992).

    PubMed  CAS  Google Scholar 

  61. C. Carter-Su, J. Schwartz and L.S. Smit, Molecular mechanism of growth hormone action. Annu Rev Physiol, 58, 187–207 (1996).

    Article  PubMed  CAS  Google Scholar 

  62. T. Zhu, E.L.K. Goh, R. Graichen, L. Ling and P.E. Lobie, Signal transduction via the growth hormone receptor. Cell Signall, 13, 599–616 (2001).

    Article  CAS  Google Scholar 

  63. L.S. Argetsinger and C. Carter-Su, Mechanism of signaling by growth hormone receptor. Physiol Rev, 76, 1089–1107 (1996).

    PubMed  CAS  Google Scholar 

  64. L.S. Argetsinger, G.S. Campbell, X.N. Yang, B.A. Witthuhn, O. Silvennoinen, J.N. Ihle and C. Carter-Su, Identification of Jak2 as a growth hormone receptor associated tyrosine kinase. Cell, 74, 237–244 (1993).

    Article  PubMed  CAS  Google Scholar 

  65. P. Colosi, K. Wong, S.R. Leong and W.I. Wood, Mutational analysis of the intracellular domain of the human growth receptor. J Biol Chem, 268, 12617–12623 (1993).

    PubMed  CAS  Google Scholar 

  66. H. Dinerstein, F. Lago, L. Goujon, F. Ferrag, N. Exposito, J. Finidori, P.A. Kelly and M.C. Postel-Vinay, The proline-rich region of the GH receptor is essential for Jak2 phosphorylation, activation of cell proliferation and gene transcription. Mol Endocrinol, 9, 1701–1707 (1995).

    Article  PubMed  CAS  Google Scholar 

  67. X.Z. Wang, C.J. Darus, B.X.C. Xu and J.J. Kopchick, Identification of growth hormone receptor (GHR) tyrosine residues required for GHR phosphorylation and JAK2 and STAT5 activation. Mol Endocrinol, 10, 1249–1260 (1996).

    Article  PubMed  CAS  Google Scholar 

  68. O. Sivennoinen, J.N Ihle, J. Schlessinger and D.E. Levy, Interferon-induced nuclear signaling by Jak protein tyrosine kinases. Nature, 366, 583–585 (1993).

    Article  Google Scholar 

  69. C. Carter-Su and L.S. Smit, Signaling via Jak tyrosine kinases: growth hormone receptor as a model system. Rec Prog Horm Res, 53, 61–83 (1998).

    PubMed  CAS  Google Scholar 

  70. N. Billestrup, P. Bouchelouche, G. Allevato, M. Hondo and J.H. Nielsen, Growth hormone receptor C-terminal domains required for growth hormone induced intracellular free Ca2+ oscillations and gene transcription. Proc Natl Acad Sci (USA), 92, 2725–2729 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. F. Gu, N. Dube, J.W. Kim, A. Cg, Mde. J. Ibarra-Sanchez and Y.R. Tremblay Boisclair, Protein tyrosine phosphatase IB attenuates growth hormone-mediated JAK2-STAT signalling. Mol Cell Biol, 23, 3753–3762 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. L. Goujon, G. Allevato, G. Simonin, L. Paquereau, A. LeCam, J. Clark, J.H. Nielsen, J. Djiane, M.C. Postel-Vinay and M. Edery, Cytoplasmic sequences of the growth hormone receptor necessary for signal transduction. Proc Natl Acad Sci (USA), 91, 957–961 (1994).

    Article  PubMed  CAS  Google Scholar 

  73. A. Moldrup, G. Allevato, T. Dyrberg, J.H. Nielsen and N. Billestrup, Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors. J Biol Chem, 266, 17441–17445 (1991).

    PubMed  CAS  Google Scholar 

  74. P.E. Lobie, G. Allevato, J.H. Nielsen, G. Norstedt and N. Billestrup, Requirement of tyrosine residues 333 and 338 of the growth hormone (GH) receptor for selected GH-stimulated function. J Biol Chem, 270, 21745–21750 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. B.X.C. Xu, X.Z. Wang, C.J. Darns and J.J. Kopchick, Growth hormone promotes the association of transcription factor STAT5 with the growth hormone receptor. J Biol Chem, 271, 19768–19773 (1996).

    Article  PubMed  CAS  Google Scholar 

  76. K.K. Ho, A.J. O’Sullivan and D.M. Hoffman, Metabolic actions of growth hormone in man. Endocr J, 43, S57–S63 (1996).

    PubMed  CAS  Google Scholar 

  77. C. Carter-Su, M.M. Ramsey and W.E. Sonntag, A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan. Trends Genet, 18, 295–301 (2002).

    Article  Google Scholar 

  78. L.S. Smit, D. Meyer, L. Argetsinger, J. Schwartz and C. Carter-Su, Molecular events in growth hormone receptor interaction and signaling. Handbook of Physiology (vol V) (Kostyo JL ed.) 445–480. Oxford University Press (1999).

    Google Scholar 

  79. H. Sakaue, W. Ogawa, M. Takata, S. Kuroda, K. Kotani, H. Matsumoto, H. Sakaue, S. Nishio, H. Ueno and M. Kasuga, Phosphoinositide 3-kinase is required for insulin-induced but not for growth hormone or hyperosmolarity induce glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol, 11, 1552–1562 (1997).

    Article  PubMed  CAS  Google Scholar 

  80. M. Ridderstrale and H. Tornqvist, PI-3-kinase inhibitor wortmannin blocks the insulin-like effects of growth hormone in isolated rat adipocytes. Biochem Biophys Res Commun, 203, 306–310 (1994).

    Article  PubMed  CAS  Google Scholar 

  81. T. Yamauchi, Y. Kaburagi, K. Ueki, Y. Tsuji, G.R. Stark, I.M. Kerr, T. Tsushima, T. Akanuma, Y. Akanuma, I. Komuro, K. Tobe, Y. Yakazi and T. Kadowaki, Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1,-2 and-3, their association with p85 phosphatidylinositol 3-kinase (PI-3kinase) and concomitantly PI-3kinase activation via JAK2 kinase. J Biol Chem, 273, 15719–15726 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. L.H. Hansen, B. Madgen, B. Teisner, J.H. Nielssen and N. Billesstrup, Characterization of the inhibitory effect of growth hormone on pituitary preadipocyte differenciation. Mol Endocrinol, 12, 1140–1149 (1998).

    Article  PubMed  CAS  Google Scholar 

  83. S.J. MacKenzie, S.J. Yarwood, A.H. Peden, G.B. Bodger, R.G. Vernon and M.D. Houslay, Stimulation of p70S6Kinase via a growth hormone-controlled phosphatidylinositol 3-kinase pathway leads to the activation of a PDE4A cyclic AMP-specific phosphodiesterase in 3T3F442 A preadipocytes. Proc Natl Acad Sci (USA), 95, 3549–3554 (1998).

    Article  PubMed  CAS  Google Scholar 

  84. F.P. Dominici, D. Cifone, A. Barthe and D. Turyn, Alterations in the early steps of the insulin-signaling system in skeletal muscle of GH transgenic mice. Am J Physiol, 277, 447–454 (1999).

    Google Scholar 

  85. F.P. Dominici, D. Cifone, A. Barthe and D. Turyn, Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone transgenic mice. J Endocrinol, 161, 383–392 (1999).

    Article  PubMed  CAS  Google Scholar 

  86. P-K. Tai, I.F. Liao, E.H. Chen, J.H. Diez, J. Schwartz and C. Carter-Su, Differential regulation of two glucose transporters by chronic growth hormone treatment of cultured T-F442 A adipose cells. J Biol Chem, 265, 21828–21834 (1990).

    PubMed  CAS  Google Scholar 

  87. P.D. Gluckman, A.J. Gunn, A. Wray, W.S. Cutfield, P.G. Chatelain, O. Guilbaud, G.R. Ambler, P. Wilton and K. Albertsson-Wikland, Congenital idiopathic growth hormone deficiency associated with prenatal and early postnatal growth failure. The International Board of the Kabi Pharmacia International Growth Study. J Pediatr, 121, 920–923(1992).

    Article  PubMed  CAS  Google Scholar 

  88. P.D. Gluckman and J.E. Harding, Fetal growth retardation: underlying endocrine mechanisms and postnatal consequences. Acta Paediatr, 422, 69–72 (1997).

    CAS  Google Scholar 

  89. W.D. Salmon Jr and W.H. Daughaday, A hormonally controlled serum factor which stimulates sulphate incorporation by cartilage in vitro. J Lab Clin Med, 49, 825–836 (1957).

    PubMed  CAS  Google Scholar 

  90. E. Rinderknecht and R.E. Humbel RE, The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem, 253, 2769–2776 (1978).

    PubMed  CAS  Google Scholar 

  91. T.L. Blundell, S. Bedarkar and R.E. Humbel, Tertiary structures, receptor binding and antigenicity of insulin-like growth factors. Fed Proc, 42, 2592–2597 (1983).

    PubMed  CAS  Google Scholar 

  92. J. Wang, J. Zhou and C.A. Bondy, Igfl promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB J, 13, 1985–1990 (1999).

    PubMed  CAS  Google Scholar 

  93. A.J. DÉrcole, G.T. Applewhite and L.E. Underwood, Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol, 75, 315–328 (1980).

    Article  Google Scholar 

  94. C.T. Roberts Jr, S.R. Lasky, W.L. Lowe Jr, W.T. Seaman and D. LeRoith, Molecular cloning of rat insulin-like growth factor I complementary deoxyribonucleic acids: differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues. Mol Endocrinol, 1, 243–248 (1987).

    PubMed  CAS  Google Scholar 

  95. V.K. Han, P.K. Lund, D.C. Lee and A.J. D’Ercole, Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J Clin Endocrinol Metab, 66, 422–429 (1988).

    PubMed  CAS  Google Scholar 

  96. W.L. Lowe Jr, S.R. Lasky, D. LeRoith and C.T. Robertrs Jr, Distribution and regulation of rat insulin-like growth factor 1 messenger ribonucleic acids encoding alternative carboxy-terminal E-peptides: evidence for differential processing and regulation in liver. Mol Endocrinol, 2, 528–535 (1988).

    PubMed  CAS  Google Scholar 

  97. O.G. Isaksson, J-O. Jansson and I.A. Gause, Growth hormone stimulates longitudinal bone growth directly. Science, 216, 1237–1239 (1982).

    PubMed  CAS  Google Scholar 

  98. A.J. D’Ercole, A.D. Stiles and L.E. Underwood, Tissue concentration of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci (USA), 81, 935–939 (1984).

    Google Scholar 

  99. L.A. Perez-Jurado and J. Argente, Molecular basis of familial growth hormone deficiency. Horm Res, 42, 189–197 (1994).

    PubMed  CAS  Google Scholar 

  100. A. Bartke, V. Chandrashekar, D. Turyn, R.W. Steger, L. Debeljuk, T.A. Winters, J.A. Mattison, N.A. Danilovich, W. Croson, D.R. Wernsing and J.J. Kopchick, Effects of growth hormone overexpression and growth hormone resistance on neuroendocrine and reproductive functions in transgeneic and knock-out mice. Proc Soc Exp Biol Med, 222, 113–123 (1999).

    Article  PubMed  CAS  Google Scholar 

  101. J.J. Jones and D.R. Clemmons, Insulin-like growth factors and their binding proteins biological actions. Endocr Rev, 16, 3–34 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. A.J. D’Ercole, P. Ye, A.S. Calikoglu and G. Gutierrez-Ospina, The role of insulin-like growth factors in the central nervous system. Mol Neurobiol, 13, 227–255 (1996).

    Google Scholar 

  103. C.A. Bondy and W.H. Lee, Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J Neurosci, 13, 5092–5104 (1993).

    PubMed  CAS  Google Scholar 

  104. W.H. Lee, K.M. Michels and C.A. Bondy, Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience, 53, 251–263 (1993).

    Article  PubMed  CAS  Google Scholar 

  105. V.C. Russo, S.R: Edmondson, F.A. Mercuri, C.R. Buchanan and G.A. Werther, Identification, localization, and regulation of insulin-like growth factor binding proteins and their messenger ribonucleic acids in the newborn rat olfactory bulb. Endocrinology, 135, 1437–1446 (1994).

    Article  PubMed  CAS  Google Scholar 

  106. G.A. Werther, M. Abate, A. Hogg, H. Cheesman, B. Oldfield, D. Hards, P. Hudson, B. Power, K. Freed and A.C. Herington, Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization-relationship to IGF-I receptors. Mol Endocrinol, 4, 773–778 (1990).

    Article  PubMed  CAS  Google Scholar 

  107. A. Grimberg and P. Cohen, Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol, 183, 1–9 (2000).

    Article  PubMed  CAS  Google Scholar 

  108. R. Baserga, The contradictions of the insulin-like growth factor I receptor. Oncogene, 19, 5574–5581 (2000).

    Article  PubMed  CAS  Google Scholar 

  109. B. Valentinis and R. Baserga, IGF-I receptor signaling in transformation and differentiation. Mol Pathol, 54, 133–137 (2001).

    Article  PubMed  CAS  Google Scholar 

  110. F. Peruzzi, M. Prisco, M. Dews, P. Salamoni, E. Grasilli, G. Romano, B. Calabretta and R. Baserga, Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection of apoptosis. Mol Cell Biol, 19, 7203–7215 (1999).

    PubMed  CAS  Google Scholar 

  111. H. Yu and T.J. Rohan, Role of the insulin-like growth factor family in cancer development and progression. Natl Cancer Inst, 92, 1472–1489 (2000).

    Article  CAS  Google Scholar 

  112. R. Baserga, A. Hongo, M. Rubini, M. Prisco and B. Valentini, The IGF-I receptor in cell growth, transformation and apoptosis. Biochem Biophys Res Commun, 214, 475–481 (1995).

    Article  PubMed  Google Scholar 

  113. C. D’Ambrosio, A. Ferber, M. Resnicoff and R. Baserga, A soluble insulin-like growth factor I receptor that induces apoptosis of tumor cells in vivo and inhibits tumorigenesis. Cancer Res, 56, 4013–4020 (1996).

    Google Scholar 

  114. G. Romano, K. Reiss, X. Tu, F. Peruzzi, B. Belleti, J.Y. Wang, T. Zanocco Maranni and R. Baserga, Efficient in vitro and in vivo gene regulation of a retrovirally-delivered pro-apoptotic factor under the control of the Drosophila HSP70 promoter. Gene Ther, 8, 600–607 (2001).

    Article  PubMed  CAS  Google Scholar 

  115. K. Reiss, X. Tu, G. Romano, F. Peruzzi, Y. Kanes and R. Baserga, Intracellular association of a mutant insulin-like growth factor receptor with endogenous receptors. Clin Cancer Res, 7, 2134–2144 (2001).

    PubMed  CAS  Google Scholar 

  116. J.R. Florini, D.Z. Ewton, S.L. Falen and J.J. Van Wyk, Biphasic concentration dependency of stimulation of myoblast differenciation. Am J Physiol, 250, 771–778 (1986).

    Google Scholar 

  117. P.J. Schmid, T. Steiner and E.R. Froesch, Preferential enhancement of myoblast differentiation by insulin-like factors (IGF-I and IGF-II) in primary cultures of chicken embryonic cells. FEBS Lett, 161, 117–121 (1983).

    Article  PubMed  CAS  Google Scholar 

  118. P.J. Smith, L.S. Wise, R. Berkovitz, C. Wan and C.S. Rubin, Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem, 263, 9402–9408 (1988).

    PubMed  CAS  Google Scholar 

  119. M. Lorenzo, A.M. Valverde, T. Teruel and M. Benito, IGF-I is a mitogen involved in differentiation-related gene expression in fetal rat brown adipocytes. J Cell Biol, 123, 1567–1575 (1993).

    Article  PubMed  CAS  Google Scholar 

  120. P.J. Schmid, T. Steiner and E.R. Froesch, Insulin-like growth factor-I supports differentiation of cultured osteoblast-like cells. FEBS Lett, 173, 48–52 (1984).

    Article  PubMed  CAS  Google Scholar 

  121. F.A. McMorris, T.M. Smith, S. DeSalvo and R.W. Furlanetto, Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci (USA), 83, 822–826 (1986).

    Article  PubMed  CAS  Google Scholar 

  122. J.F. Mill, M.V. Chao and D.N. Ishii, Insulin, Insulin-like growth factor-II and nerve growth effects on tubulin mRNA levels and neurite formation. Proc Natl Acad Sci (USA), 81, 7126–7130 (1985).

    Article  Google Scholar 

  123. E. Recio-Pinto, F.F. Lanf and D.N. Ishii, Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite response in human cultured neuroblastoma cells. Proc Natl Acad Sci (USA), 81, 2562–2566 (1984).

    Article  PubMed  CAS  Google Scholar 

  124. A. Morrione, G. Romano, M. Navarro, K. Reiss, B. Valentinis, M. Dews, E. Eves, M.R. Rosner and R. Baserga, Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Cancer Res, 60, 2263–2272 (2000).

    PubMed  CAS  Google Scholar 

  125. A. Morrione, M. Navarro, G. Romano, M. Dews, K. Reiss, B. Valentinis, B. Belletti and R. Baserga, The role of the insulin receptor substrate-1 in the differentiation of rat hippocampal neuronal cells. Oncogene, 20, 4842–4852 (2001).

    Article  PubMed  CAS  Google Scholar 

  126. M. Valtieri, D.J. Tweardy, D. Caracciolo, K. Johnson, F. Mavilio, S. Altmann, D. Santoli and G. Rovera, Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immnunol, 138, 3829–2835 (1987).

    CAS  Google Scholar 

  127. B. Cristofanelli, B. Vallentinis, S. Soddu, M.G. Rizzo, A. Marchetti, G. Bossi, A.R. Morena, M. Dews, R. Baserga and A. Sacchi, Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene, 19, 3245–3255 (2000).

    Article  PubMed  CAS  Google Scholar 

  128. B. Valentinis, M. Navarro, T. Zanocco-Marani, P. Edmons, J. McCormick, A. Morrione, A. Sacchi, G. Romano, K. Reiss and R. Baserga, Insulin-receptor substrate-1, p70S6K, and cell size in transformation and differentiation of hemopoietic cells. J Biol Chem, 275, 25451–25459 (2000).

    Article  PubMed  CAS  Google Scholar 

  129. B. Valentinis, G. Romano, F. Peruzzi, A. Morrione, M. Prisco, S. Soddu, B. Cristofanelli, A. Sacchi and R. Baserga, Growth and differentiation signals by the insulin-like growth factor I receptor in hemopoietic cells are mediated through different pathways. J Biol Chem, 274, 12423–12430 (1999).

    Article  PubMed  CAS  Google Scholar 

  130. K. Reiss, J.Y. Wang, G. Romano, X. Tu, F. Peruzzi and R. Baserga, Mechanisms of regulation of cell adhesion and motility by insulin receptor substrate-1 in prostate cells. Oncogene, 20, 490–500 (2001).

    Article  PubMed  CAS  Google Scholar 

  131. M. Navarro and R. Baserga, Limited redundancy of survival signals from the type 1-insulin-like growth factor receptor. Endocrinology, 142, 1073–1081 (2001).

    Article  PubMed  CAS  Google Scholar 

  132. N.J. Mc Carthy, M.K.B. Whyte, C.S. Gilbert and G.I. Evan, Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage or the Bcl-2 homologue Bak. J Cell Biol, 136, 215–227 (1997).

    Article  CAS  Google Scholar 

  133. M.G. Myers, T.C. Grammer, L.M. Wang, X.J. Sun, J.H. Pierce, J. Blenis and M.F. White, Insulin receptor substrate-1 mediates phosphatidylinositol 3kinase and p70S6k signaling during insulin, insulin like growth factor 1 and interleukin-4 stimulation. J Biol Chem, 269, 28783–28789 (1994).

    PubMed  CAS  Google Scholar 

  134. J.S. Greenberger, M.A. Sakakeeny, C.J. Humphries, C.J. Eaves and R.J. Eckner, Demonstration of permanent factor-dependent multipotential erythroid/neutrophil/basophil hemopoietic progenitor cell lines. Proc Natl Acad Sci (USA), 80, 2931–2935 (1983).

    Article  PubMed  CAS  Google Scholar 

  135. G.J. Pronk, J. McGlade, G. Pelicci, T. Pawson and J.L. Bos, Insulin-induced phosphorylation of the 46-and 52-kDa Shc proteins. J Biol Chem, 268, 5748–5753 (1993).

    PubMed  CAS  Google Scholar 

  136. T. Sasaoka, D.W. Rose, B.H. Jhun, A.R. Saltier, B. Draznin and J.M. Olefsky, Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1 and epidermal growth factor. J Biol Chem, 269, 13689–13694 (1994).

    PubMed  CAS  Google Scholar 

  137. S.M. Twigg, M.C. Kiefer, J. Zapf and R.C. Baxter RC, Insulin-like growth factor-binding protein 5 complexes with the acid-labile subunit. Role of the carboxyl-terminal domain. J Biol Chem, 273, 28791–28798 (1998).

    Article  PubMed  CAS  Google Scholar 

  138. L.J. Cobb, D.A. Salih, I. Gonzalez, G. Tripathi, E.J. Carter, F. Lovett, C. Holding and J.M. Pell, Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function J Cell Sci, 117, 1737–1746 (2004).

    Article  PubMed  CAS  Google Scholar 

  139. S. Mohan and D.J. Baylink, IGF-binding proteins are multifunctional and act via IGF-dependent and independent mechanisms. J Endocrinol, 175, 19–31 (2002).

    Article  PubMed  CAS  Google Scholar 

  140. C. Lassarre, S. Hardouin, F. Daffos, F. Forestier, F. Frankeene and M. Binoux, Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res, 29, 219–225 (1991).

    PubMed  CAS  Google Scholar 

  141. R.I. Holt. Fetal programming of the growth hormone-insulin-like growth factor axis. Trends Endocrinol Metab. 13, 392–397 (2002).

    Article  PubMed  CAS  Google Scholar 

  142. P.D. Gluckman, J.H. Butler, R. Comline and A. Fowden, The effects of pancreatectomy on the plasma concentrations of insulin-like growth factors 1 and 2 in the sheep fetus. J Dev Physiol, 9, 79–88 (1987).

    PubMed  CAS  Google Scholar 

  143. M. Gourmelen, Y. Le Bouc, F. Girard and M. Binoux, Serum levels of insulin-like growth factor (IGF) and IGF binding protein in constitutionally tall children and adolescents. J Clin Endocrinol Metab, 59, 1197–1203 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Frago, L.M., Chowen, J.A. (2005). Basic Physiology of the Growth Hormone/Insulin-Like Growth Factor Axis. In: Varela-Nieto, I., Chowen, J.A. (eds) The Growth Hormone/Insulin-Like Growth Factor Axis During Development. Advances in Experimental Medicine and Biology, vol 567. Springer, Boston, MA. https://doi.org/10.1007/0-387-26274-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-26274-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25119-6

  • Online ISBN: 978-0-387-26274-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics