Skip to main content
Log in

Discerning ionic currents and their kinetics from input impedance data

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The excitable nature of a biological cell is manifested in the many voltage gated ion channels that perforate its membrane. The forms of the associated ionic currents, and in particular the functions that govern their kinetics, permit one to distinguish, electrophysiologically, between various cell types. We show, in the context of FitzHugh-Nagumo and Morris-Lecar models and without recourse to voltage or space clamping, that such currents and kinetics may be stably inferred from a cell’s voltage response to a specified input current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon-Snir, H. (1995). A novel theoretical approach to the analysis of dendritic transients. Biophys. J. 69, 1633–1656.

    Article  Google Scholar 

  • Cox, S. J. (1998). A new method for extracting cable parameters from input impedance data. Math. Biosci. 153, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, S. J. and L. Ji (2000). Identification of the cable parameters in the somatic shunt model. Biol. Cybern. 83, 151–159.

    Article  MATH  Google Scholar 

  • Cox, S. J. and B. Griffith (2001). Recovering quasi-active properties of dendritic neurons from dual potential recordings. J. Comput. Neurosci., to appear.

  • FitzHugh, R. (1969). Mathematical models of excitation and propagation in nerve, in Biological Engineering, H. P. Schwan (Ed.), New York: McGraw-Hill.

    Google Scholar 

  • Keener, J. and J. Sneyd (1998). Mathematical Physiology, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Miller, R. K. and A. N. Michel (1982). Ordinary Differential Equations, New York: Academic Press.

    MATH  Google Scholar 

  • Murio, D. A., C. E. Mejia and S. Zhan (1998). Discrete mollification and automatic numerical differentiation. Comput. Math. Appl. 35, 1–16.

    Article  MathSciNet  Google Scholar 

  • Pilant, M. and W. Rundell (1988). Fixed-point methods for a nonlinear parabolic inverse coefficient problem. Commun. Partial Diff. Equ. 13, 469–493.

    MathSciNet  MATH  Google Scholar 

  • Rall, W., R. E. Burke, W. R. Holmes, J. J. B. Jack, S. J. Redman and I. Segev (1992). Matching dendritic neuron models to experimental data. Physiol. Rev. 172, S159–S186.

    Google Scholar 

  • Vanier, M. C. and J. M. Bower (1999). A comparative survey of automated parameter—search methods for compartmental neural models. J. Comput. Neurosci. 7, 149–171.

    Article  Google Scholar 

  • Willms, A. R., D. J. Baro, R. M. Harris-Warrick and J. Guckenheimer (1999). An improved parameter estimation method for Hodgkin—Huxley models. J. Comput. Neurosci. 6, 145–168.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, S.J., Ji, L. Discerning ionic currents and their kinetics from input impedance data. Bull. Math. Biol. 63, 909–932 (2001). https://doi.org/10.1006/bulm.2001.0250

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2001.0250

Keywords

Navigation