Skip to main content
Log in

Enzyme kinetics at high enzyme concentration

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We re-visit previous analyses of the classical Michaelis-Menten substrate-enzyme reaction and, with the aid of the reverse quasi-steady-state assumption, we challenge the approximation d[C]/dt ≈ 0 for the basic enzyme reaction at high enzyme concentration. For the first time, an approximate solution for the concentrations of the reactants uniformly valid in time is reported. Numerical simulations are presented to verify this solution. We show that an analytical approximation can be found for the reactants for each initial condition using the appropriate quasi-steady-state assumption. An advantage of the present formalism is that it provides a new procedure for fitting experimental data to determine reaction constants. Finally, a new necessary criterion is found that ensures the validity of the reverse quasi-steady-state assumption. This is verified numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberty, R. A. (1956). Enzyme kinetics, in Advances in Enzymology and Related Subjects of Biochemistry, Vol. 17, F. F. Nord (Ed.), New York: Interscience Publishers, pp. 1–64.

    Google Scholar 

  • Alberty, R. A. (1959). The rate equation for an enzymic reaction, in The Enzymes, 2nd edn Vol. 1, P. D. Boyer, H. Lardy and K. Myrback (Eds), New York: Academic Press, pp. 143–155.

    Google Scholar 

  • Barry, D. A., S. J. Barry and P. J. Culligan-Hensley (1995). Algorithm 743: a Fortran routine for calculating real values of the W-function. ACM Trans. Math. Softw. 21, 172–181.

    Article  MathSciNet  Google Scholar 

  • Barry, D. A., P. J. Culligan-Hensley and S. J. Barry (1995). Real values of the W-function. ACM Trans. Math. Softw. 21, 161–171.

    Article  MathSciNet  Google Scholar 

  • Borghans, J. A. M., R. J. De Boer and L. A. Segel (1996). Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63.

    Article  Google Scholar 

  • Briggs, G. E. and J. B. S. Haldane (1925). A note on the kinetics of enzyme action. Biochem. J. 19, 338–339.

    Google Scholar 

  • Cha, S. (1970). Kinetic behavior at high enzyme concentrations. J. Biol. Chem. 245, 4814–4818.

    Google Scholar 

  • Cha, S. and C.-J. M. Cha (1965). Kinetics of cyclic enzyme systems. Mol. Pharmacol. 1, 178–189.

    Google Scholar 

  • Corless, R. M., G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996). On the Lambert W function. Adv. Comput. Math. 5, 329–359.

    Article  MathSciNet  Google Scholar 

  • Dixon, M. (1972). The graphical determination of K M and K i . Biochem. J. 129, 197–202.

    Google Scholar 

  • Fersht, A. R. (1985). Enzyme Structure and Mechanism, New York: Freeman, pp. 84–102.

    Google Scholar 

  • Fritsch, F. N., R. E. Shafer and W. P. Crowley (1973). Algorithm 443: solution of the transcendental equation we w = x. Commun. ACM 16, 123–124.

    Article  Google Scholar 

  • Goldstein, A. (1944). The mechanism of enzyme-inhibitor-substrate reactions. J. Gen. Physiol. 27, 529–580.

    Article  Google Scholar 

  • Goudar, C. T., J. R. Sonnad and R. G. Duggleby (1999). Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Biochim. Biophys. Acta 1429, 377–383.

    Google Scholar 

  • Haldane, J. B. S. and K. G. Stern (1932). Allgemeine Chemie der Enzyme, Dresden: Verlag von Steinkopff, pp. 119–120.

    Google Scholar 

  • Hearon, J. Z., S. A. Bernhard, S. L. Friess, D. J. Botts and M. F. Morales (1959). Enzyme kinetics, in The Enzymes, 2nd edn, Vol. 1, P. D. Boyer, H. Lardy and K. Myrbäck (Eds), New York: Academic Press, pp. 49–142.

    Google Scholar 

  • Henderson, P. J. F. (1973). Steady-state enzyme kinetics with high-affinity substrates or inhibitors. Biochem. J. 135, 101–107.

    Google Scholar 

  • Hommes, F. A. (1962). The integrated Michaelis-Menten equation. Arch. Biochem. Biophys. 96, 28–31.

    Article  Google Scholar 

  • Laidler, K. J. (1955). Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624.

    Article  Google Scholar 

  • Lim, H. C. (1973). On kinetic behavior at high enzyme concentrations. AIChE J. 19, 659–661.

    Article  Google Scholar 

  • Lin, C. C. and L. A. Segel (1988). Mathematics Applied to Deterministic Problems in the Natural Sciences, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), pp. 303–320.

    Google Scholar 

  • Lineweaver, H. and D. Burk (1934). The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–566.

    Article  Google Scholar 

  • Michaelis, L. and M. L. Menten (1913). Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369.

    Google Scholar 

  • Reiner, J. M. (1969). Behavior of Enzyme Systems, New York: Van Nostrand Reinhold Company, pp. 82–90.

    Google Scholar 

  • Schauer, M. and R. Heinrich (1979). Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. J. Theor. Biol. 79, 425–442.

    Article  Google Scholar 

  • Schnell, S. and C. Mendoza (1997). Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–212.

    Article  Google Scholar 

  • Schulz, A. R. (1994). Enzyme Kinetics. From Diastase to Multi-enzyme Systems, Cambridge: Cambridge University Press, pp. 3–29.

    Google Scholar 

  • Segel, I. H. (1975). Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, New York: Wiley, pp. 18–99.

    Google Scholar 

  • Segel, L. A. (1984). Modelling Dynamic Phenomena in Molecular and Cellular Biology, New York: Cambridge University Press, pp. 51–62.

    Google Scholar 

  • Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50, 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  • Segel, L. A. and M. Slemrod (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477.

    Article  MathSciNet  Google Scholar 

  • Sols, A. and R. Marco (1970). Concentrations of metabolites and binding sites. Implications in metabolic regulation, in Current Topics in Cellular Regulation, Vol. 2, B. Horecker and E. Stadtman (Eds), New York: Academic Press, pp. 227–273.

    Google Scholar 

  • Srere, P. A. (1967). Enzyme concentrations in tissues. Science 158, 936–937.

    Google Scholar 

  • Stayton, M. M. and H. J. Fromm (1979). A computer analysis of the validity of the integrated Michaelis-Menten equation. J. Theor. Biol. 78, 309–323.

    Article  Google Scholar 

  • Straus, O. H. and A. Goldstein (1943). Zone behavior of enzyme. J. Gen. Physiol. 26, 559–585.

    Article  Google Scholar 

  • van Slyke, D. D. and G. E. Cullen (1914). The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180.

    Google Scholar 

  • Walter, C. (1966). Quasi-steady state in a general enzyme system. J. Theor. Biol. 11, 181–206.

    Article  Google Scholar 

  • Walter, C. F. and M. F. Morales (1964). An analogue computer investigation of certain issues in enzyme kinetics. J. Biol. Chem. 239, 1277–1283.

    Google Scholar 

  • Wong, J. T. (1965). On steady-state method of enzyme kinetics. J. Am. Chem. Soc. 87, 1788–1793.

    Article  Google Scholar 

  • Wright, E. M. (1959). Solution of the equation z exp.(z) = a. Proc. R. Soc. Edinburgh, A 65, 193–203.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, S., Maini, P.K. Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000). https://doi.org/10.1006/bulm.1999.0163

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0163

Keywords

Navigation