Skip to main content
Log in

Optimal strategies and complexity: A theoretical analysis of the anti-predatory behavior of the hare

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Predator—prey relationships involving rabbits and hares are widely studied at a long-term population level, while the short-term ethological interactions between one predator and one prey are less well documented. We use a physiologically-based model of hare behavior, developed in the framework of artificial intelligence studies, to analyse its sophisticated anti-predatory behavior. The hares use to stand to the fox in order to inform it that its potential prey is alerted. The behavior of the hare is characterized by specific standing and flushing distances. We show that both hare survival probability and body condition depend on habitat cover, as well as on the ability of the predator to approach—undetected—a prey. We study two anti-predatory strategies, one based on the maximization of the survival probability and the other on the maximization of the body conditions of the hare. Despite the fact that the two strategies are not independent, they are characterized by quite different behavioral patterns. Field estimates of flushing and standing distances are consistent with survival maximization. There exists an optimal anti-predatory strategy, characterized by a flushing distance of 20 m and a standing distance of 30 m, which is optimal in a large set of environmental conditions with a sharp fitness advantage with respect to suboptimal strategies. These results improve our understanding of the anti-predatory behavior of the hare and lend credibility to the optimality approach in the behavioral analysis, showing that even for complex organisms, characterized by a large network of internal constraints and feedback, it is possible to identify simple optimal strategies with a large potential for selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelstam, P., E. R. Lindtröm and P. Widèn (1985). Synchronous short-term population fluctuations of some birds and mammals in Fennoscandia—occurrence and distribution. Holartic Ecol. 8, 285–298.

    Google Scholar 

  • Arditi, R. and B. Dacorogna (1988). Optimal foraging on arbitrary food distributions and the definition of habitat patches. Am. Nat. 131, 837–846.

    Article  Google Scholar 

  • Arditi, R. and L. R. Ginzburg (1989). Coupling in predator—prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326.

    Google Scholar 

  • Artois, M. and A. Le Gall (1988). Le Renard, Paris: Hatier.

    Google Scholar 

  • Berger, U., G. Wagner and W. F. Wolff (1999). Virtual biologists observe virtual grasshoppers: an assessment of different mobility parameters for the analysis of movement patterns. Ecol. Model. 115, 119–227.

    Article  Google Scholar 

  • Berryman, A. A. (1992). The origin and evolution of predator—prey theory. Ecology 73, 1530–1535.

    Article  Google Scholar 

  • Caro, T. M. (1986). The function of stotting: a review of hypotheses. Am. Nat. 34, 649–662.

    Google Scholar 

  • Coulson, R. N., L. J. Folse and D. K. Loh (1987). Artificial intelligence and natural resource management. Science 237, 262–267.

    Google Scholar 

  • Farnsworth, K. D. and K. J. Niklas (1995). Theories of optimization, form and function in branching architecture in plants. Funct. Ecol. 9, 355–363.

    Article  Google Scholar 

  • Ferron, J. and J. P. Ouellet (1992). Daily partitioning of summer habitat and use of space by the snowshoe hare in southern boreal forest. Can. J. Zool. 70, 2178–2183.

    Article  Google Scholar 

  • Flux, J. E. C. (1970). Life history of the mountain hare (Lepus timidus scoticus) in northeast Scotland. J. Zool., London 161, 75–123.

    Article  Google Scholar 

  • Folse, L. J., J. M. Packard and W. E. Grant (1989). AI modelling of animal movements in a heterogeneous habitat. Ecol. Model. 46, 57–72.

    Article  Google Scholar 

  • Gould, S. J. and R. C. Lewontin (1979). The spandrels of San Marco and the Panglossian paradigm: acritique to the adaptationist program. Proc. R. Soc. Lond. Ser. B 205, 581–598.

    Article  Google Scholar 

  • Holley, A. J. F. (1993). Do brown hares signals to foxes? Ethology 94, 21–30.

    Article  Google Scholar 

  • Larkin, S. and D. McFarland (1978). The cost of changing from one activity to another. Anim. Behav. 26, 1237–1246.

    Article  Google Scholar 

  • Lindström, E. R., H. Andrén, P. Angelstam and P. Widèn (1986). Influence of predators on hare populations in Sweden: a critical review. Mam. Rev. 16, 151–156.

    Google Scholar 

  • Lindström, E. R., H. Andrèn, P. Angelstam, G. Cederlund, B. Hörnfeldt, L. Jäderberg, P. A. Lemnell, B. Martinsson, K. Sköld and J. E. Swenson (1994). Disease reveals the predator: sarcoptic mange, red fox predation and prey populations. Ecology 75, 1942–1049.

    Google Scholar 

  • Litvaitis, J., J. A. Sherburne and J. A. Bissonette (1985). Influence of understory characteristics on snowshoe hare habitat use and density. J. Wildl. Manage. 49, 866–873.

    Google Scholar 

  • Lloyd, H. G. (1980). The Red Fox, London: BT Batsford LTD.

    Google Scholar 

  • Łomnicki, A. (1999). Individual-based models and theindividual-based approach to population ecology. Ecol. Model. 115, 191–198.

    Article  Google Scholar 

  • Mangel, M. and C. W. Clark (1988). Dynamic Modeling in Behavioral Ecology, Princeton: Monographs in behavior and ecology, Princeton University Press.

    Google Scholar 

  • McFarland, D. and A. Houston (1981). Quantitative Ethology—The State Space Approach, London: Pitman Press.

    Google Scholar 

  • McFarland, D. and T. Bösser (1993). Intelligent Behavior in Animal and Robots, Cambridge: A Bradford Book, MIT Press.

    Google Scholar 

  • Odum, E. P. (1959). Foundamentals of Ecology, Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Österholm, H. (1964). The significance of distance receptors in the feeding behaviour of the fox, Vulpes vulpes L.. Acta Zool. Fenn. 106, 1–31.

    Google Scholar 

  • Pahl-Wostl, C. (1995). The Dynamic Nature of Ecosystems. Chaos and Order Entwined, Chichester: John Wiley & Sons.

    Google Scholar 

  • Pépin, D. (1989). Variation in survival of brown hare (Lepus europaeus) leverets from different farmland areas in the Paris basin. J. Appl. Ecol. 26, 13–23.

    Google Scholar 

  • Rizzotto, M. and S. Focardi (1997). A physiologically-based model of a self-motivated hare in relation to its ecology. Ecol. Model. 95, 191–209.

    Article  Google Scholar 

  • Rich, E. and K. Knight (1991). Artificial Intelligence, 2nd edn, New York: McGraw-Hill.

    Google Scholar 

  • Saarenmaa, H., N. D. Stone, L. J. Folse, J. M. Packard, W. E. Grant, M. E. Makela and R. N. Coulson (1988). An artificial intelligence modelling approach to simulating animal/habitat interactions. Ecol. Model. 44, 125–141.

    Article  Google Scholar 

  • Servin, J., J. R. Rau and M. Delibes (1991). Activity pattern of the red fox. Vulpes vulpes, in Doñana, SW Spain. Acta Ther. 36, 369–373.

    Google Scholar 

  • Sinclair, A. R. E. (1986). Testing multi-factor causes of population limitation: an illustration using snowshoe hares. Oikos 47, 360–364.

    Google Scholar 

  • Stephens, D. W. and J. R. Krebs (1986). Foraging Theory, Princeton: Princeton University Press.

    Google Scholar 

  • Weber, J. M., J. J. Meia and S. Aubry (1994). Activity pattern of foxes. Vulpes vulpes, in the swiss Jura mountains. Z. Säuget. 59, 9–13.

    Google Scholar 

  • Windberg, L. A. and L. B. Keith (1976). Snowshoe hare population response to artificial high densities. J. Mamm. 57, 523–553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Focardi, S., Rizzotto, M. Optimal strategies and complexity: A theoretical analysis of the anti-predatory behavior of the hare. Bull. Math. Biol. 61, 829–848 (1999). https://doi.org/10.1006/bulm.1999.0114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1999.0114

Keywords

Navigation