Skip to main content
Log in

In vitro DNA-based predator-prey system with oscillatory kinetics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A coupled system of two isothermal in vitro DNA/RNA amplification reactions using different primers is modeled kinetically with realistic rate parameters and shown to exhibit oscillatory behavior in a flow reactor. One of the two isothermal amplification reactions acts as a predator of the other, the prey. The mechanism of the oscillatory behavior is analyzed in terms of a hierarchy of kinetic models. The work provides an insight into the choice of parameters for experiments. The latter are important in providing detailed insight into the complex processes of ecological interactions and their evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biebricher, Ch. K., M. Eigen and W. C. Gardiner Jr (1983). Kinetics of RNA replication. Biochemistry 22, 2544.

    Article  Google Scholar 

  • Biebricher, Ch. K., M. Eigen and W. C. Gardiner Jr (1984). Kinetics of RNA replication: plus-minus asymmetry and double-stranded formation. Biochemistry 23, 3186.

    Article  Google Scholar 

  • Biebricher, Ch. K., M. Eigen and W. C. Gardiner Jr (1985). Kinetics of RNA replication: competition and selection among self-replication of RNA species. Biochemistry 24, 6550.

    Article  Google Scholar 

  • Böddeker, B. and J. S. McCaskill (1998). Do self-replicant spots provide a plattform for heriditary molecular diversity? J. Theor. Biol., in press.

  • Boerlijst, M. C. and P. Hogeweg (1991). Spiral wave structure in pre-biotic evolution: hypercycles stable against parasites. Physica D48, 17.

    Google Scholar 

  • Bray, W. C. (1980). Hypercycles, parasites and packages. J. Theor. Biol. 85, 399.

    Article  Google Scholar 

  • Ehricht, R., Th. Ellinger and J. S. McCaskill (1997). Cooperative amplification of templates by cross-hybridization (CATCH). Eur. J. Biochem. 243, 358.

    Article  Google Scholar 

  • Eigen, M. (1989). The molecular quasispecies. Adv. Chem. Phys. 75, 149.

    Google Scholar 

  • Eigen, M. (1971). The quasispecies model. Naturwissenschaften 58, 465.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster (1977). The hypercycle: A principle of natural self-organisation. Naturwissenschaften 64, 541.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster (1978a). Naturwissenschaften 64, 7.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster (1978b). Naturwissenschaften 65, 341.

    Article  Google Scholar 

  • Ellington, A. D., M. P. Robertson and J. Bull (1997). Ribozymes in wonderland. Science 276, 546.

    Article  Google Scholar 

  • Emlen, J. M. (1984). Population Biology. MacMillan, New York, USA.

    Google Scholar 

  • Foerster, P., B. Wlotzka and J. S. McCaskill (1994). Spatially resolved evolution studies in an open reactor. Ber. Bunsenges. Phys. Chem. 98, 1203.

    Google Scholar 

  • Gebinoga, M. and F. Oehlenschläger (1996). Comparisons of 3SR reaction systems. Eur. J. Biochem. 235, 256.

    Article  Google Scholar 

  • Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour. New York: Cambridge University Press.

    MATH  Google Scholar 

  • Gray, P. and S. K. Scott (1985). Sustained oscillations and other exotic patterns of behavior in isothermal reactions. J. Chem. Phys. 89, 22.

    Article  Google Scholar 

  • Guatelli, J. C., K. M. Whitefield, D. Y. Kwoh, K. J. Barringer, D. D. Richman and T. R. Gingeras (1990). Isothermal, in vitro amplification of nuclei acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. USA 87, 1874.

    Article  Google Scholar 

  • Guckenheimer, J. and P. Holmes (1993). Nonlinear Oscillations, Dynamical Systems, and Bifurcation oc Vector Fields, volume 42 of Applied Mathematical Science, New York: Springer.

    Google Scholar 

  • Hofbauer, J. and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems, Cambridge: University of Illinois Press.

    MATH  Google Scholar 

  • Lotka, A. J. (1910). Contribution to the theory of periodic reactions. J. Phys. Chem. 14, 271.

    Article  Google Scholar 

  • Lotka, A. J. (1920). Undamped oscillation derived from the law of mass action. J. Amer. Chem. Soc. 42, 201.

    Article  Google Scholar 

  • Luisi, P. L., P. Walde and T. Oberholzer (1994). Enzymatic RNA synthesis in self-reproducing vesicles: an approach to the construction of a minimal synthetic cell. Ber. Bunsenges. Phys. Chem. 98, 1160.

    Google Scholar 

  • Murray, J. M. (1982). Parameter space for Turing instability in reaction-diffusion mechanisms: a comparison of models. J. Theor. Biol. 98, 1431.

    Article  Google Scholar 

  • Murray, J. M. (1993). 2nd edn. Mathematical Biology, Berlin: Springer.

    MATH  Google Scholar 

  • Olsen, L. F. (1983). An enzyme reation with strange attractor. Phys. Lett. 94, 454.

    Article  Google Scholar 

  • Spiegelmann, S. (1971). An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213.

    Article  Google Scholar 

  • Swinney, H. S. (1984). Chemical chaos, in Non-equilibrium Dynamics in Chemical Systems, C. Vidal and A. Pacault (Eds), p. 124. Berlin: Springer.

    Google Scholar 

  • Volterra, V. (1926). Variazionie fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei. 2, 31.

    Google Scholar 

  • Volterra, V. (1931). Variations and fluctuations of a number of individuals in animal species living together, in Animal Ecology, R. N. Chapman (ed.), New York: McGraw Hill, p. 409.

    Google Scholar 

  • Wlotzka, B. and J. S. McCaskill (1997). A molecular predator and its prey: coupled isothermal amplification of nucleic acids. Biology & Chemistry 4, 25.

    Article  Google Scholar 

  • Wright, M. C. and G. F. Joyce (1997). Continuous in vitro evolution of catalytic function. Science 276, 614.

    Article  Google Scholar 

  • Wu, X. G. and R. Kapral (1994). Effects of molecular fluctuations on chemical oscillations and chaos. J. Chem. Phys. 100, 5936.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackermann, J., Wlotzka, B. & McCaskill, J.S. In vitro DNA-based predator-prey system with oscillatory kinetics. Bull. Math. Biol. 60, 329–354 (1998). https://doi.org/10.1006/bulm.1997.0001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0001

Keywords

Navigation