
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed under the

terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use,

distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Science, Engineering and Technology

Print ISSN: 2395-1990 | Online ISSN : 2394-4099 (www.ijsrset.com)

doi : https://doi.org/10.32628/IJSRSET218318

105

Server-Side Template Injection with Custom Exploit
Rushi Mamtora1, Dr. Priyanka Sharma2

School of Information Technology, Artificial Intelligence, and Cyber Security, Rashtriya Raksha University,

Gandhinagar, Gujarat, India

Article Info

Volume 8, Issue 3

Page Number: 105-108

Publication Issue :

May-June-2021

Article History

Accepted : 10 May 2021

Published: 16 May 2021

ABSTRACT

Cyber attacks are getting progressively incessant, causing a great deal of harm.

Attackers take our valuable information by compromising web application

security loopholes. Dynamic content that is being incorporated into the html

that has been served to the client. assume when you open a site page then you

see your name so that is dynamic substance for each client who additionally at

any point visits that page. We can inject input fields and they are shipped off

the web worker. So ,we need to check for all information handled whose worth

is reflected in some structure to get the prepared payload. Then attempt to

misuse it dependent on the layouts. This paper discusses the idea of an template

injection and its impact on template based web application

Keywords: Cyber Security, Vulnerability, Templates, Websecurity, Remote

Code Execution, Directory Path Traversal.

I. INTRODUCTION

Nowadays, Templates are widely used by web

applications to present dynamic data via web pages

and emails. Unsafely embedding user input in

templates which empowers SSTI. It occurs when an

attacker is able to use original template syntax to

inject a malicious payload into a template, which is

then executed server-side. SSTI vulnerabilities can

reveal websites to a number of attacks relying upon

the format of the template engine. In certain

uncommon conditions, these vulnerabilities affect no

real security risk. However, most of the time, the

impact of server-side template injection can be great

damage. An attacker can potentially achieve remote

code execution by taking full control of the back-end

server and using it to perform different attacks on

internal infrastructure. SSTI is occurs when an

attacker is able to use original template syntax to

inject a malicious payload into a template, which is

then executed server-side. This attack potentially

allows attackers to upload custom exploits like,

remote code execution, directory traversal, command

execution, XML injection, etc

II. OBJECTIVE

Cyber attacks are getting progressively incessant,

causing a ton of harm. Assailants take our important

information by bargaining web application security

loopholes .Dynamic content that is being

incorporated into the html that has been served to the

client. assume when you open a page then you see

your name so that is a dynamic substance for each

client who likewise at any point visits that page.

Typically it is being finished by templates like, twig

(php), jinja2(python), smarty(php),etc. which utilize

http://www.ijsrset.com/
https://doi.org/10.32628/IJSRSET218318

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Rushi Mamtora et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 105-108

106

fixed static templates for html records and the

qualities are being supplanted with whatever esteem

the server is resembling passing it.

However this is the symptom of XSS and more critical

or serious vulnerability. So we need to deep dive into

this and try to perform mathematical operations. This

kind of code can perform it also.

Ex. custom_email={{3**3}}

9

This kind of stuff works depending on the templates

used by the website and developers. We can check if

the application is approving information fields by

embedding characters that are utilized in the server

side template to incorporate mandates, as : < ! # =/. " - >

likewise we can check [a-zA-Z0-9].

Likewise we can check by certain pages with

augmentations like .stm, .shtm and .shtml. That isn't

sure if these expansions are there in the site is helpless

in light of the fact that it is just weak when the web

server licenses server side incorporate execution

without legitimate approval. This can prompt access

and control of the record framework and interaction

over the web server. Attackers can get to delicate data,

for example, secret phrase documents, and execute

the shell commands. Attack result will be

distinguishable whenever that the page is stacked for

the client's program.

A. DETECT

1. PLAIN TEXT

Most template languages are freeform text where you

can directly input html code.

Ex.

smarty = hello {user.name}

Hello user

freemarker = hello ${username}

hello user2

any=hello

hello

This kind of thing we can exploit by doing XSS[5].

But also it can allow for template injection.

Ex.

smarty = hello ${3*3}

hello 9

freemarker = hello ${3*3}

hello 9

2. CODE TEXT

User input can be also placed with template

statements.

welcome_greeting = username

Hello user1

So, XSS is not obvious in this. We need to break out

the tag after it.

welcome_greeting = username<tag>

Hello

Welcome_greeting = username}}<tag>

Hello user1 <tag>

B. IDENTITY

After detecting template injection our next step is to

identify the template engine usage. Sometimes it is

trivial. We need to do some try and error methods

and try to identify. We can do this thing by using

burpsuite tool to automate the process of identity.

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Rushi Mamtora et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 105-108

107

C. EXPLOIT

First, we need to read the template engine’s

documentation. Like, list of built-in methods, filters,

variables, extensions, plugins, etc. The second step is

to explore the environment to find out what exactly

we have to access. Suppose there are no built-in

variables then we can brute force it by using a

wordlist. The last step is to proceed with traditional

security techniques, reviewing functions for

exploitable vulnerabilities. This is an important

approach in context. If the wider application is there

then we can follow template injection to trigger

arbitrary object creation, arbitrary read/write/upload,

remote file inclusion, information disclosure, etc.

III. Result & Discussion

According to different kinds of literature, manual

methodology consistently gives the best precision.

However, to distinguish various kinds of layouts there

must be a work process to recognize it and do misuse

part of it. Already individuals had done research on

various formats and other vulnerabilities. Various

layouts have various personalities and from that, we

can go further for the misuse part. That abuse will be

covered by the most significant vulnerabilities like

Remote Code Execution, Path Traversal, XSS, and so

on.

An attempt has been made in 2018[1], to unmask the

backend logic of an Ajax template injection, its

process of exploitation by which it can be used to

access database tables and columns. The results show

that it currently poses a threat to Ajax-based web

applications, but it can keep a footprint of the most

sophisticated attack in the history of cyberspace

attack. Therefore, the attempt was intended to help

web developers, security experts, and penetration

testers to consider it seriously even if it is a low-level

Ajax-based security loophole.

File sharing and downloading activities using web

applications have now become common, not just

ensuring the easy distribution of various kinds of

records and archives yet in addition hugely lessening

the time and exertion of clients. Albeit the online

administrations that are being utilized much of the

time have made clients' life simpler, it has expanded

the danger of misuse of local file disclosure (LFD)

weakness in the web uses of various public-area

associations due to unstable plan and indiscreet

coding. In 2017[2], examinations examine the

underlying driver of LFD weakness and its misuse

procedures.

Kullback-Leibler distance (or divergence) (KLD) to

identify the side effects of code injection attack ahead

of schedule during program runtime. Bit of leeway of

the perception that during code injection attack, the

proposed structure goes amiss from the normal design.

The KLD can be an appropriate measure to catch the

deviation. That Includes the advancement of a

worker-side framework to register KLD. They applied

a smoothing algorithm to keep away from the

limitless KLD distance during the assault recognition

stage and assess the approach with three PHP

applications having SQLI and XSS vulnerabilities. The

underlying outcomes show that KLD can be a

powerful estimation strategy to distinguish the event

of a code injection attack. The methodology

experiences lower false positive and negative rates,

and forces unimportant runtime overhead. (March -

2014)[3].

Remote Code Execution (RCE) attacks in web

applications. The examination reasons about the

International Journal of Scientific Research in Science, Engineering and Technology | www.ijsrset.com | Vol 8 | Issue 3

Rushi Mamtora et al Int J Sci Res Sci Eng Technol, May-June-2021, 8 (3) : 105-108

108

string and non-string conduct of a program firmly. It

initially makes two abstractions of the program to

show the string and non-string behavior, respectively,

which are encoded to limitations independently. A

novel algorithm is created to determine the two sets

of constraints together. The strategy handles a great

deal of RCE explicit difficulties by expanding the

deliberations. Our examination shows that the

procedure is compelling in recognizing RCE

vulnerabilities in certifiable PHP applications,

delivering many fewer false positives contrasted with

elective methods. Furthermore, the fundamental

limitation tackling calculation is very efficient.

(2013)[4].

A static analysis for finding XSS vulnerabilities that

analyzes the root cause of XSS: weak input validation.

In May-2008[5], analysis checked whether untrusted

input to the server can invoke a client’s JavaScript

interpreter. We made a careful examination of the

W3C recommendation, the Firefox source code, and

other online sources to express this policy in formal

language terms. We have demonstrated that our

approach can scale to large codebases and can detect

known and unknown XSS vulnerabilities in real-

world web applications with manually written input

validation routines.

IV. Conclusion

The goal of this research due to lack of input

validation the templates are possibly vulnerable to

server side template injection. The use input appears

to be placed into dynamically evaluated inputs that

allow an attacker to execute arbitrary code execution,

directory path traversal, etc. Developer needs to pass

user inputs into templates as parameters. Sanitize the

input before passing it into the templates by removing

unwanted and risky characters before parsing the data.

This minimizes the vulnerabilities for any malicious

probing of your templates. I will research first to

detect the templates and then go for the execution

step.

V. REFERENCES

[1]. Vijit Das Noyon, Yeahia Md Abid , Md. Maruf

Hassan , Md. Hasan Sharif, Fabiha Nawar Deepa,

Rayhanul Islam Rumel, Rafita Haque, Samia

Nasrin, Moniruz Zaman. A Study of Ajax

Template Injection in Web Applications.

https://www.researchgate.net/publication/326668

286_A_Study_of_Ajax_Template_Injection_in_

Web_Applications

[2]. M. I. Ahmed, M. M. Hassan, and T. Bhuyian.

Local File Disclosure Vulnerability: A Case Study

of Public-Sector Web Applications

https://www.researchgate.net/publication/322236

714_Local_File_Disclosure_Vulnerability_A_Cas

e_Study_of_Public-Sector_Web_Applications

[3]. Hossain Shahriar*, Sarah M. North, YoonJi Lee

and Roger Hu. Server-side code injection attack

detection based on Kullback-Leibler distance.

https://www.researchgate.net/publication/280768

581_Server-

Side_Code_Injection_Attack_Detection_Based_o

n_Kullback-Leibler_Distance

[4]. Yunhui Zheng, Xiangyu Zhang. Path sensitive

static analysis of web applications for remote

code execution vulnerability detection

https://ieeexplore.ieee.org/document/6606611

[5]. Gary Wassermann; Zhendong Su. Static

detection of cross-site scripting vulnerabilities.

https://ieeexplore.ieee.org/document/4814128

Cite this article as :

Rushi Mamtora, Dr. Priyanka Sharma "Server-Side

Template Injection with Custom Exploit",

International Journal of Scientific Research in Science,

Engineering and Technology (IJSRSET), Online ISSN :

2394-4099, Print ISSN : 2395-1990, Volume 8 Issue 3,

pp. 105-108, May-June 2021. Available at

doi : https://doi.org/10.32628/IJSRSET218318

Journal URL : https://ijsrset.com/IJSRSET218318

https://doi.org/10.32628/IJSRSET218318
https://search.crossref.org/?q=10.32628/IJSRSET218318&from_ui=yes
https://ijsrset.com/IJSRSET218318

