Skip to main content
Log in

Integrative conjugative elements (ICEs) of microorganisms

  • Reviews
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Integrative conjugative elements (ICEs) are a large group of mobile elements found in Gram-positive and Gram-negative bacteria. These genetic elements are replicated by incorporation into the host chromosome, but retain the capability of excision and conjugative transfer. A set of genes in ICEs enables conjugative transfer and control of element removal and integration into the host chromosome. These features indicate that ICEs are directly involved in processes of horizontal transfer of genetic determinants, which increase the adaptive potential of bacterial species, and can also function as universal mobilizing factors for other genetic elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wozniak, R. and Waldor, M., Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow, Nat. Rev. Microbiol., 2010, Vol. 8, pp. 552–563.

    Article  CAS  PubMed  Google Scholar 

  2. Burrus, V. and Waldor, M., Shaping bacterial genomes with integrative and conjugative elements, Res. Microbiol., 2004, Vol. 155, No. 5, pp. 376–386.

    Article  CAS  PubMed  Google Scholar 

  3. Hastings, P., Rosenberg, S., and Slack, A., Antibioticinduced lateral transfer of antibiotic resistance, Trends Microbiol, 2004, Vol. 12, No. 9, pp. 401–404.

    Article  CAS  PubMed  Google Scholar 

  4. Wozniak, R., Fouts, D., Spagnoletti, M., et al., Comparative ICE genomics: Insights into the evolution of the SXT/R391 family of ICEs, PLoS Genet., 2009, Vol. 5, No. 12, p. e1000786. doi:10.1371/journal.pgen.1000786

    Google Scholar 

  5. Ryan, M., Pembroke, J., and Adley, C., Novel Tn4371ICE like element in Ralstonia pickettii and genome mining for comparative elements, BMC Microbiol., 2009, Vol. 9, p. 242. doi: 10.1186/1471–2180-9–242

    Article  PubMed Central  PubMed  Google Scholar 

  6. Burrus, V., Pavlovic, G., Decaris, B., and Guédon, G., Conjugative transposons The tip of the iceberg, Mol. Microbiol., 2002, Vol. 46, No. 3, pp. 601–610.

    Article  CAS  PubMed  Google Scholar 

  7. Hochhut, B., Lotfi, Y., Mazel, D., et al., Molecular analysis of the antibiotic resistance gene clusters in the Vibrio cholerae O139 and O1 SXT constins, Antimicrob. Agents Chemother., 2001, Vol. 45, No. 11, pp. 2991–3000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Waldor, M., Tschäpe, H., and Mekalanos, J., A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139, J. Bacteriol., 1996, Vol. 178, No. 14, pp. 4157–4165.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Burrus, V., Marrero, J., and Waldor, M., The current ICE age: Biology and evolution of SXT-related integrating conjugative elements, Plasmid, 2006, Vol. 55, No. 3, pp. 173–183.

    Article  CAS  PubMed  Google Scholar 

  10. Ehara, M., Nguyen, B., Nguyen, D., et al., Drug susceptibility and its genetic basis in epidemic Vibrio cholerae O1 in Vietnam, Epidemiol. Infect., 2004, Vol. 132, No. 4, pp. 595–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Iwanaga, M., Toma, C., Miyazato, T., et al., Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos, Antimicrob. Agents Chemother., 2004, Vol. 48, No. 7, pp. 2364–2369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Thungapathra, M., Amita, A., Sinha, K., et al., Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India, Antimicrob. Agents Chemother., 2002, Vol. 46, No. 9, pp. 2948–2955.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ahmed, A., Shinoda, S., and Shimamoto, T., A variant type of Vibrio cholerae SXT element in a multidrugresistant strain of Vibrio fluvialis, FEMS Microbiol. Lett., 2005, Vol. 242, No. 2, pp. 241–247.

    Article  CAS  PubMed  Google Scholar 

  14. Burrus, V., Quezada-Calvillo, R., Marrero, J., et al., SXT-related integrating conjugative element in New World Vibrio cholera, Appl. Environ. Microbiol., 2006, Vol. 72, No. 4, pp. 3054–3057.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dalsgaard, A., Forslund, A., Sandvang, D., et al., Vibrio cholerae O1 outbreak isolates in Mozambique and South Africa in 1998 are multiple-drug resistant, contain the SXT element and the aadA2 gene located on class 1 integrons, J. Antimicrob. Chemother., 2001, Vol. 48, pp. 827–838.

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez-Bianco, A., Lemos, M., and Osorio, C., Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments, Antimicrob. Agents Chemother., 2012, Vol. 56, No. 5, pp. 2619–2626.

    Article  Google Scholar 

  17. Burrus, V., Significance of the SXT/R391 family of integrating conjugative elements in Vibrio cholerae, in Epidemiological and Molecular Aspects on Cholera Infectious Disease, Ramamurthy, T. and Bhattacharya, S.K., Springer, 2011, pp. 161–184.

    Chapter  Google Scholar 

  18. Osorio, C., Marrero, J., Wozniak, R., et al., Genomic and functional analysis of ICEPdaSpa1, a fish-pathogen-derived SXT related integrating conjugative element that can mobilize a virulence plasmid, J. Bacteriol., 2008, Vol. 190, No. 9, pp. 3353–3361.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Pembroke, J. and Piterina, A., A novel ICE in the genome of Shewanella putrefaciens W3–18-1: Comparison with the SXT/R391 ICE-like elements, FEMS Microbiol. Lett., 2006, Vol. 264, No. 1, pp. 80–88.

    Article  CAS  PubMed  Google Scholar 

  20. Burrus, V. and Waldor, M., Shaping bacterial genomes with integrative and conjugative elements, Res. Microbiol, 2004, Vol. 155, No. 5, pp. 376–386.

    Article  CAS  PubMed  Google Scholar 

  21. Seth-Smith, H., Fookes, M., Okoro, C., et al., Structure, diversity, and mobility of the Salmonella pathogenicity island 7 family of integrative and conjugative elements within Enterobacteriaceae, J. Bacteriol., 2012, Vol. 194, No. 6, pp. 1494–1504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ghinet, M., Bordeleau, E., Beaudin, J., et al., Uncovering the prevalence and diversity of integrating conjugative elements in Actinobacteria, Mob. Genet. Elements, 2012, Vol. 2, No. 2, pp. 119–124.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Beaber, J. and Waldor, M., Identification of operators and promoters that control SXT conjugative transfer, J. Bacteriol., 2004, Vol. 186, No. 17, pp. 5945–5949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yokota, T. and Kuwahara, S., Temperature-sensitive R plasmid obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor), Antimicrob. Agents Chemother., 1977, Vol. 11, No. 1, pp. 13–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Beaber, J., Burrus, V., Hochhut, B., et al., Comparison of SXT and R391, two conjugative integrating elements definition of a genetic backbone for the mobilization of resistance determinants, Cell. Mol. Life Sci., 2002, Vol. 59, No. 12, pp. 2065–2070.

    Article  CAS  PubMed  Google Scholar 

  26. Hochhut, B. and Waldor, M., Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC, Mol. Microbiol., 1999, Vol. 32, No. 1, pp. 99–110.

    Article  CAS  PubMed  Google Scholar 

  27. Marrero, J. and Waldor, M., Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer, Dev. Cell, 2005, Vol. 8, No. 6, pp. 963–970.

    Article  CAS  PubMed  Google Scholar 

  28. Ramamurthy, T., Garg, S., Sharma, R., et al., Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India, Lancet, 1993, Vol. 341, No. 8846, pp. 703–704.

    Article  CAS  PubMed  Google Scholar 

  29. Beaber, J., Hochhut, B., and Waldor, M., SOS response promotes horizontal dissemination of antibiotic resistance genes, Nature, 2004, Vol. 427, No. 6969, pp. 72–74.

    Article  CAS  PubMed  Google Scholar 

  30. Beaber, J., Hochhut, B., and Waldor, M., Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholera, J. Bacteriol., 2002, Vol. 184, No. 15, pp. 4259–4269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bordeleau, E., Brouillette, E., Robichaud, N., and Burrus, V., Beyond antibiotic resistance: Integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-diGMP signalling in Vibrio cholerae, Environ. Microbiol., 2010, Vol. 12, No. 2, pp. 510–523.

    Article  CAS  PubMed  Google Scholar 

  32. Sherburne, C., Lawley, T., Gilmour, M., et al., The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer, Nucleic Acids Res., 2000, Vol. 28, No. 10, pp. 2177–2186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Garriss, G., Waldor, M., and Burrus, V., Mobile antibiotic resistance encoding elements promote their own diversity, PLoS Genet., 2009, Vol. 5, No. 12, p. e1000775. doi: 10.1371/journal.pgen.1000775

    Google Scholar 

  34. Roberts, A. and Mullany, P., A modular master on the move: The Tn916 family of mobile genetic elements, Trends Microbiol., 2009, Vol. 17, No. 6, pp. 251–258.

    Article  CAS  PubMed  Google Scholar 

  35. Gaillard, M., Vallaeys, T., Vorhölter, F., et al., The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties, J. Bacteriol., 2006, Vol. 188, No. 5, pp. 1999–2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Moon, K., Sonnenburg, J., and Salyers, A., Unexpected effect of a Bacteroides conjugative transposon, CTnDOT, on chromosomal gene expression in its bacterial host, Mol. Microbiol., 2007, Vol. 64, No. 6, pp. 1562–1571.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Smyth, D. and Robinson, D., Integrative and sequence characteristics of a novel genetic element, ICE6013, in Staphylococcus aureus, J. Bacteriol., 2009, Vol. 191, No. 19, pp. 5964–5975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Frost, L., Leplae, R., Summers, A., and Toussaint, A., Mobile genetic elements: The agents of open source evolution, Nat. Rev. Microbiol., 2005, Vol. 3, No. 9, pp. 722–732.

    Article  CAS  PubMed  Google Scholar 

  39. Mazel, D., Dychinco, B., Webb, V., and Davies, J., Antibiotic resistance in the ECOR collection: Integrals and identification of a novel aad gene, Antimicrob. Agents Chemother., 2000, Vol. 44, No. 6, pp. 1568–1574.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Viktorov.

Additional information

Original Russian Text © I.B. Zakharova, D.V. Viktorov, 2015, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2015, No. 3, pp. 9–16.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.B., Viktorov, D.V. Integrative conjugative elements (ICEs) of microorganisms. Mol. Genet. Microbiol. Virol. 30, 114–123 (2015). https://doi.org/10.3103/S0891416815030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416815030076

Keywords

Navigation