
INTRODUCTION

Almost 50 years ago scientists discovered wingless gene in
Drosophila melanogaster. Functional genetic studies revealed its
role in developmental patterns (1). For example Wnt signaling
pathway is associated with cell differentiation, polarization and
migration during development. Therefore, its involvement in
cancer biology was also expected.

The main component of the Wnt signaling pathway is the
family of the Wnt proteins activating cell membrane receptors in
paracrine and autocrine manner. Wnt proteins secreted by cells can
induce cellular mechanisms by activation of Fzd (Frizzled)
membrane proteins and through intracellular proteins and
transcription factors regulate gene expression. The structure of Wnt
pathway is based on three signaling pathways: canonical β-catenin
dependent, and two β-catenin independent, non-canonical Wnt
signaling pathways: PCP (planar cell polarity) signaling pathway
and Ca2+ Wnt pathway.

Although Wnt signaling pathway disorders are best known
in cancer progression, they can be a cause of other diseases
development, for example Alzheimer’s disease and bone
abnormalities (2). In this review we describe the role of Wnt
signaling pathway in development to understand its role in
cancer. We also briefly point out anti-cancer therapies targeting
Wnt proteins.

WNT/b-CATENIN SIGNALING

Structure

The structure of Wnt/β-catenin signaling also known as
canonical Wnt pathway can be grouped as three main components,
the membrane proteins, degradation complex and β-catenin protein
(Fig. 1). In the cell membrane there are localized Frizzled (Fzd)

receptors for Wnt proteins. Next to Fzd receptors are localized
ligands belonging to low-density lipoprotein receptor-related
protein group (LRP) which are encoded by the lrp5 and lrp6 genes
(3, 4). The destruction complex is formed from adenomatous
polyposis coli (APC), axin, glycogen synthase kinase 3 (Gsk3),
casein kinase 1α (CK1α) and Dishevelled (Dvl) proteins (5). When
Wnt/β-catenin pathway is inactive the destruction complex is
formed around β-catenin protein to which ubiquitin particles are
attached. In this process axin and APC are phosphorylated by
CK1α and Gsk3 kinases. In the case when Wnt/β-catenin pathway
is active CK1α and Gsk3 through Dishevelled are bounded to β-
catenin enabling catalyzation of phosphorylation reaction (5).

Mechanism

Activation of trans-membrane complex composed of Fzd
receptor and LRP5 or LRP6 co-receptor mediates β-catenin
dependent canonical Wnt pathway. Stimulation of Fzd receptor
via Wnt ligands for other co-receptors results in a non-canonical
Wnt pathways activation (3, 4). The β-catenin is a protein
involved in gene transcription. When canonical Wnt pathway is
activated, β-catenin translocates into nucleus and acts as a
transcription factor. However, when Wnt pathway is not active,
β-catenin protein is actively degraded (Fig. 1). The intracellular
level of β-catenin is regulated by canonical Wnt pathway.
Stimulation of Fzd-LRP5/6 complex results in upregulation of
the level of this protein. In case of Fzd-LRP ligands absence, the
level of cytoplasmic β-catenin is low. Its degradation is ensured
by the destruction complex (5). Activation of Fzd-Lrp5/6
complex by Wnt ligand, Dishevelled (Dvl) leads to inhibition of
the degradation complex formation. The Dvl binding to Fzd
results in exposure of Dvl’s DIX domains, which are binding
sites for axin. Besides, axin binds to intracellular tail of the LRP.
Once bound to the receptor complex, axin is unable to bind β-
catenin, furthermore - it inhibits Gsk3 activity. The effect of this
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cascade reaction prevents phosphorylation of β-catenin, its
ubiquitination and proteasome degradation. Newly synthesized
β-catenin accumulates in the cytoplasm eventually translocating
into the nucleus. Nuclear β-catenin then replaces a repressor of
T-cell factor/lymphoid enhancer factor (TCF/LEF) which are
transcription factors activating Wnt-responsive genes. Besides,
interaction of β-catenin and TCF/LEF recruits transcriptional co-
activators and histone modifiers such as the ATP-dependent
helicase Brahma-related gene 1 (BRG1, also known as
SMARCA4), cyclic adenosine monophosphate response
element, CREB-binding protein (CBP), p300, B-cell lymphoma
9 (BCL9) and pygopus (6) (Fig. 1).

Mode of action in development

Wnt/β-catenin signaling is an evolutionary conserved system
that plays crucial role in embryogenesis, organogenesis and
homeostasis. This pathway developed early in phylogenetics. It
is common to all metazoan life forms and shares the same genes
among such different species as human and Drosophila fly. The
Wnt/β-catenin signaling is known as an important regulatory
pathway that governs developmental process and the fate
choices during tissue morphogenesis (7-9). The main role of
canonical Wnt pathway is to provide symmetry-breaking signal
common to all metazoan life forms by simultaneously regulating
cell fate, whereas non-canonical signaling is responsible for cell
polarity.

Canonical Wnt pathway plays a very important role starting
from early embryogenesis. During gastrulation β-catenin
promotes primitive streak formation in the posterior part of
embryo. It may also function in a ligand-independent fashion to
orient distal visceral endoderm anteriorly. Mutation of Wnt3

gene, which is a ligand of LRP5/6, disrupts gastrulation by
blocking primitive streak and consequently mesoderm and
definitive endoderm formation. Another evidence is that Lrp5/6
double mutants, as well as classical mouse mutant of the gene
encoding Mesd (a specific chaperone for Lrp5 and 6) displays
very similar patterning defects as the Wnt3 mutants. In summary
- while early embryogenesis, Wnt/β-catenin signaling pathway
regulates cell fate of embryonic endodermal cells that provides
desired organogenesis (10).

Mode of action in cancer

Although canonical Wnt pathway plays an important role
during development, it should be consequently downregulated in
differentiated cells. Increased expression of β-catenin may be
caused by the following factors: mutations in β-catenin gene,
abnormalities in the β-catenin destruction complex, mutations in
APC, overexpression of Wnt ligands, and loss of inhibition or
decreased activity of regulatory pathways. The Wnt/β-catenin
signaling is activated in many types of cancer.

Abnormal activation of the Wnt/β-catenin pathway has been
reported as one of the predisposing factors in many cancer types.
For example in cutaneus melanoma, nuclear β-catenin binds to
TCF/LEF-type transcription factors (Fig. 1) and consequently
stimulates expression of downstream genes, such as cyclin D1
and c-MYC. Overexpression of mentioned genes alter cell cycle
progression and contribute to tumorigenesis (11).

Epithelial-mesenchymal transition (EMT) is the process by
which polarized epithelial cells acquire mesenchymal
phenotype. This process can be induced by several signaling
pathways including the Wnt/β-catenin. In this type of tumor, the
upregulation of canonical Wnt pathway is caused by
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Fig. 1. Graphical illustration of mechanism of action of canonical Wnt pathway.  Wnt pathway is inactive (OFF) when Wnt ligands are
unbound to its receptor Frizzled (FZD). It can be inhibited by WIF, SFRP and DKK extracellular proteins.  This situation results in β-
catenin ubiquitination (Ub) and proteosomal degradation. Degradation is possible due to degradation complex formation (AXIN, APC,
βTRCP, WTX) and functional phosphorylation of proteins building this complex by CK1 and GSK3 kinases. After Wnt proteins are bound
to Frizzled (ON) and are in close neighborhood of co-receptor LRP, dishevelled (DVL) protein is bound resulting in failure of degradation
of the complex formation. β-catenin is accumulated in cytoplasm and translocated to the nucleus to act as transcription factor and induce
the gene expression.



overexpression of factor named Tiam1 - T lymphoma invasion
and metastasis 1. Besides, increased Tiam1 expression is
associated with metastasis in several cancers including
colorectal, breast, prostate, lung cancer, renal cell carcinoma and
hepatocellular carcinoma. Tiam1 acts on Wnt/β-catenin pathway
indirectly: it activates Rac1 - a member of the Rho GTPase
family, which subsequently modulates activity of the 
β-catenin/TCF complexes at Wnt-responsive promoters,
enhancing target genes transcription (12). Korbut and co-
workers paid attention on correlation between cancer stem cells,
EMT process and Wnt/β-catenin signaling. It was proven that
growth of primary tumors converting non-tumorigenic cells into
cancer stem cells by processes related to the EMT. Numerous
experiments confirmed that target genes of WNT signaling are
implicated in cell-adhesion, which in consequence has an impact
on EMT. This suggests a model that integrates a number of
fundamental processes that underlie disease development and it
should be put forward as an important target for novel therapies
(13).

Downstream targets of β-catenin/TCF include genes
expressing such factors as c-myc, cyclin D1, MMP-7, LGR5,
uPAR, connexin 42, CD44, AF17, ENC1, laminin-5ga2, PPAR-
δ, claudin-1, MT1-MMP. There have been detected 53 genes,
whose expression was enhanced more than two-fold in response
to the suppression of the β-catenin/TCF7L2 complex. Although
genes upregulated by Wnt/β-catenin pathway have been
intensively studied, the role of downregulated genes have not
been fully understood. Many of those genes were found to be
significantly associated with interferon signaling, suggesting
that Wnt signaling might affect interferon-mediated immune
responses. Among the genes, expression of IFIT2 - a gene
encoding interferon-induced protein, was significantly lower in
colonorectal cancer tissues than in normal tissues. Four members
of IFIT family play a crucial role in the host antiviral defense.
Interestingly, IFIT1 and IFIT2 in association with MITA
(mediator of IRF3 activation) induce apoptosis via the
mitochondrial pathway. Moreover, IFIT2 elicits apoptotic cell
death independent of IFN stimulation. Since activation of the β-
catenin/TCF7L2 complex is a common feature observed in
colonorectal cancer cells, the expression levels of IFIT1 and
IFIT2 were significantly downregulated compared to normal
tissues. It has been proven, that β-catenin/TCF7L2 complex
functions as a transcription downregulator of IFIT1 and IFIT2,
however through unknown mechanism. In this way inhibition of
apoptosis may confer pro-survival properties to cancer cells
(14). Pajak et al. found positive correlation between β-catenin
inhibition and decreased expression of secretory clusterin in
human colon adenocarcinoma cells COLO 205.
Epigallocatechin-3-gallate an important bioactive constituent of
green tea extract which was widely believed to reduce
proliferation of many cancer cell lines but dose-dependently
increase COLO 205 cells viability and proliferation.
Epigallocatechin-3-gallate stimulated secretory clusterin
expression level, which underwent complex control through
lipid rafts/PKC/Wnt/β-catenin pathway. Inhibition of β-catenin
pathway significantly reduced secretory clusterin expression as
well as cells viability and proliferation, reducing pro-tumour
effect of epigallocatechin-3-gallate (15).

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors worldwide. It has been confirmed, that in
highly malignant HCC there is upregulation of RPS15A -
ribosomal protein s15a which plays a promotive role in the
mRNA/ribosome interactions during early transcription. Recent
studies indicated that RPS15A induced angiogenesis - tumor
tissue with its overexpression demonstrated a higher
microvascular density. The angiogenesis was associated with
FGF signaling, especially FGF18, which secreted in the HCC

microenvironment acts on FGFR3 receptor on the endothelial
cell membrane. FGF18 activates downstream signaling
phospho-AKT and phospho-ERK, increasing the angiogenic
potency of a tumor. It has been proven, that Wnt/β-catenin
pathway ligand - Wnt3a, increased level of RPS15A. To sum up:
RPS15A mediates the nuclear transcription of FGF18 induced
by the β-catenin activation (16). Another studies demonstrated
that the Wnt/β-catenin pathway regulated protein expression of
other angiogenic factors: MMP-2, MMP-9, VEGF-A, VEGF-C,
bFGF in HCC cells (17). There is a study indicating that the
inhibition of Wnt/β-catenin pathway could suppress migration
and invasion ability of HCC cells, promote apoptosis and
improve the efficacy of TACE - transcatheter arterial
chemoembolization in rat model (18).

In breast cancer knockdown of ALX4 gene recovered cell
proliferation, migration and invasion. Therefore, ALX4 is
considered as an anti-tumor factor. It interrupts Wnt/β-catenin
signaling. ALX reduces the protein level of β-catenin by
promoting its phosphorylation via upregulating GSK3β, which
subsequently results in its ubiquitination and proteasomal
degradation. Lack of this mechanism causes expression of Wnt
target genes (19).

In gliomas, PPAR gamma (peroxisome proliferator-activated
receptor gamma) agonists inhibit cell proliferation by induction
of cell-cycle arrest in G0/G1 phase. These two systems - Wnt/β-
catenin and PPAR gamma act in an opposite manner. In several
cellular systems β-catenin expression is inhibited by PPAR
gamma agonists. This phenomenon may indicate, that decreased
expression of PPAR gamma in glial tissue may directly lead to
carcinogenesis, and indirectly - by weakening the inhibition of
Wnt/β-catenin pathway (20).

WNT/PCP SIGNALING

Structure

The structure of Wnt planar cell polarity PCP signaling
pathway is also based on transmembrane receptors Fzd and Wnt
proteins. However, there is no involvement of the β-catenin
(Fig. 2). The core PCP machinery consists of six proteins. Three
out of six of so called ‘core module’ factors are transmembrane
components: Frizzled (Fzd) (21), Vangl (also known as
Strabismus (Stbm), Vang-like (Vangl) in vertebrates) (22) and
Flamingo (Fmi, also known as Stan, Celsr in vertebrates) (21,
22). Recent studies, aimed to asses precise molecular structure
of the Wnt/PCP pathway have shown, that Vangl side of the
core complex consists of six Vangl molecules per each Fmi
(25). The Wnt/PCP complex is composed of three cytoplasmic
proteins: Dishevelled (Dsh; Dishevelled-like (Dvl) in
vertebrates) (26), Prickle (Pk) (27), and Diego (Dgo; known as
Inversin and Diversin in vertebrates) (28-30). The second group
of Wnt/PCP factors consists of the Fat/Dachsous/four-jointed
(Ft/Ds/Fj) group (also known as global module), which so far
has not been as well studied as the core module (31, 32). All
these molecules activate the final cytoplasmic effector
molecules: small Rho GTPases (RhoA), c-jun N-terminal
kinase (jNK), and nemo-like kinase (NLK) (33-38).

Mechanism

Planar cell polarity (PCP) is a pathway driving tissue
patterning organization and morphogenesis. This is an important
feature of epithelia, which are defined by their apical-basal
polarization and polarization within the plane of epithelium. The
same pathway can also regulate polarity in nonepithelial cells
during cell migration within tissues (39-41). A characteristic
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feature of Wnt/PCP is the asymmetric localization of its
components that translate a global directional information into a
polarized downstream result. Most of the molecular details of
the pathway has been discovered and studied in Drosophila, but
both the components and mechanisms of signaling are
evolutionary conserved in vertebrates (42, 43). Wnt/PCP has
important functions in a broad array of developmental and
physiological cases in vertebrates, like: convergent extension
during antero-posterior axis elongation, placement of motile and
sensory cilia in cells, and polarization of skin and hair follicles
(44-46).

Proteins belonging to core PCP machinery (Fzd, Vangl, Fmi,
Dsh, Pk and Dgo) interact with each other in both inter- and
intracellular ways. These interactions and the fact that these
proteins are divided into two asymmetric PCP complexes in both
adjacent cells, give the cell a planar orientation axis. Asymmetric
localization of core components create two sub-complexes
constituted of Fmi-Fzd-Dsh-Dgo and Fmi-Vangl-Pk located in
opposite sides of the same cell. The core module creates
intracellular connection through Fmi homophillic adhesions,
which are aided by Fzd and Vangl proteins. This combination is
required to spread polarity across the tissues (30, 47).
Cytoplasmic proteins Dsh, Dgo and Pk take part both in positive
and negative interactions, which help to stabilize the connections
between cells. The second group of Wnt/PCP factors Ft/Ds/Fj
provides additional information for the core Wnt/PCP to
correctly orient local polarity to fit it into the tissue axes. Both
Ds and Fj are expressed in oppositely oriented gradients in each
of the studied tissue and body compartment (48). The expression
gradients of Ds and Fj provide directional information, which is
then translated into oriented cellular asymmetries that are at the

end interpreted and used by downstream mechanisms. The final
effectors of the global module, the protocadherins Ft and Ds
form asymmetric structures that may orient in one of two
directions at any apical cell-cell boundary. The transmembrane
kinase Fj (48, 49) phosphorylates extracellular domains of Ds
and Ft and modulates their interactions (50, 51).

Essentially, one of the most important features of Wnt/PCP
is the asymmetric localization of components of both core
module and global module, that translates a global directional
cue into a polarized downstream output, which results in
activation of small Rho GTPases (RhoA), c-jun N-terminal
kinase (jNK), and nemo-like kinase (NLK) (33-38).

Mode of action in development

As mentioned above the key aspect of the Wnt/PCP signaling
is asymmetrical arrangement in the cells. The asymmetrical
localization of receptors and others Wnt/PCP components is
information for cytoskeleton rearrangement inside the cells and
to follow this cell movement and directional growth (52). Proper
function of complex organism is possible only when the polarity
of each cell in a tissue is established, which allows settlement of
proper tissue geometry during morphogenesis (53). In tissues
during morphogenesis, signaling centers send out a polarizing
signal. Cells respond to these signals and establish polarity
through the Wnt/PCP core module (54) and Wnt protein gradients
(33, 55, 56). If cells in the developing embryo were not polarized,
they would develop into symmetric sphere made of different type
of cells. Morphogenes, such as Wnts form a concentration
gradient along cells in tissue. This gradient allows cells to
differentiate according to local threshold concentrations of Wnt
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Fig. 2. Graphical illustration of mechanism of action of the
non-canonical Wnt pathway. Both non-canonical Wnt
pathways (PCP and calcium) are activated by Wnt proteins
binding to Frizzled receptor and disheveled, however close
neighborhood of ROR2 co-receptor, Vangl and Celsr is
also crucial. The signal then is translocated by G proteins
(Gα, Gβg) to phospholipase C and finally to inositol
trisphosphate (IP3) what results in calcium release.
Increased Ca2+ level activates down-stream kinases and
transcription factors such as NFAT which are positive
regulators of non-canonical target gene expression and
negative regulators of expression of β-catenin controlled
genes. The PCP pathway after Wnt activation is also
responsible for gene expression regulation but also for cell
cytoskeleton remodeling together with ROCK and jNK
kinases.



proteins. Morphogen concentrations give quantitative
information to generate a specific cell pattern (57).

Some examples of processes, which are regulated by
Wnt/PCP signaling are: elongating anteroposterior body axis,
orientations of Drosophila hair, fur in mice, sensory hair cells in

inner ear and closing neural tubes. Defects in Wnt/PCP signaling
have been associated with many developmental anomalies and
diseases including open neural tube defects (58-60), polycystic
kidneys (58, 61), heart defects (62), deafness (60), and situs
inversus, also known as Kartagener’s syndrome (63).
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Table 1. Summary of drugs targeting Wnt pathway in clinical trials.

Drug Mechanism of action Condition or disease Clinicaltrials.gov 
identifier 

Phase Clinical outcome 

LGK974 
(WNT974) 

PORCN inhibitor Solid malignancies NCT01351103 Phase I: ongoing Results from 68 patients 
showed manageable safety 
profile and potential for 
antitumor activity.  

Colorectal cancer NCT02278133 Phase Ib/II: completed Results not yet reported. 
 

ETC-159  
(ETC-1922159) 

PORCN inhibitor Solid malignancies NCT02521844 Phase Ia/b: recruiting Study open for 
recruitment. 
 

Cirmtuzumab  
(UC-961) 

Monoclonal antibody 
targeting ROR1 

Chronic lymphotic 
leukemia 

NCT02222688 Phase I: ongoing Drug was well tolerated 
and had a long half-life. 
Patients had sustained 
stabilization of disease and 
a long progression-free 
survival. 

B-cell lymphoid 
malignancies 

NCT03088878 Phase I: recruiting Study open for 
recruitment. 

Breast cancer NCT02776917 Phase I: not yet 
recruiting 
 

Not yet recruiting. 

OTSA 101-DTPA-
90Y 

Monoclonal antibody 
targeting FZD10 

Synovial sarcoma NCT01469975 
 

Phase I: terminated  
(too slow accrual.) 

Results from 16 patients: 
death occurred in 2/7 
treated and in 6/7 untreated 
patients. 
 

Vanituctumab 
(OMP-18R5) 

Monoclonal antibody 
targeting frizzled 
receptors 

Solid tumors NCT01345201 Phase I: completed Drug was well tolerated up 
to 2.5 mg/kg q3w and 
observed bone toxicity 
appeared manageable and 
reversible. 

Pancreatic cancer NCT02005315 Phase I: completed Drug was well tolerated in 
combination with nab-
paclitaxel and gemcitabine 
(bone toxicity 
encountered). 

Breast cancer NCT01973309 Phase I: completed Drug was well tolerated in 
combination with 
paclitaxel (bone toxicity 
encountered). 

Non-small cell lung 
cancer 
 

NCT01957007 Phase I: completed Results not yet reported. 

Ipafricept 
(OMP-54F28) 

Fusion protein binding 
ligand of Fzd8 receptor  

Hepatocellular cancer NCT02069145 Phase I: completed Results not yet reported. 
Ovarian cancer NCT02092363 Phase I: completed Results from 17 patients 

showed good safety profile 
in combination with 
paclitaxel and carboplatin 
(bone toxicity 
encountered). 

Pancreatic cancer NCT02050178 Phase I: active,  
not recruiting 

Study still ongoing. 

Solid tumors NCT01608867 Phase I: completed Drug was well tolerated 
and 20 mg/kg dose was 
established. 
 

Niclosamide -
catenin signalling 

Colon cancer NCT02687009 Phase I: recruiting Study open for 
recruitment. 
 

DKN-01 Monoclonal antibody 
targeting DKK1 

Multiple myeloma NCT01711671 Phase I: completed Drug was well tolerated in 
7/8 patients and the overall 
response rate was 57.1% 
(4/7). 

Non-small cell lung 
cancer 

NCT01457417 Phase I: completed DKN-01 was well 
tolerated and demonstrated 
clinical activity in non-
small cell lung cancer. 



Mode of action in cancer

Correlation between up-regulation of PCP components along
with several Wnt ligands and poor outcome has been shown in
many different cancer types (64-66). On the other hand, tumor
suppressive function of Wnt/PCP has also been described (67). It
is presumed that Wnt ligands are able to activate different
pathways depending on down-regulation of canonical signaling,
context and interactions between different Wnt complexes. The
Wnt/PCP influence on cancer progression is very complex and
depends on cancer type and stage of its development (68).

The most important role of Wnt/PCP pathway in tumor
development is its influence on cancer metastasis (69). In breast
cancer fibroblast-derived exosomes can promote Wnt11/PCP
signaling to increase invasive behavior (70). Asymmetry of PCP
components is observed within cancer cells with Fzd complexes
gathering in cell protrusions, and Vangl complexes localizing along
the non-protrusive cell areas (70). On the other hand, Wnt/PCP
plays different role in cancer cells than during morphogenesis. In
tumors it gives no directional cues allowing cytoskeletal
remodeling. Lately a new Prickle1-Rictor complex has been
discovered which is responsible for regulation of focal adhesions
and cancer cell migration. Disruption of this complex resulted in a
heavy impairment of breast cancer cells dissemination and
Prickle1-Rictor upregulation in basal breast cancers giving worse
metastasis-free survival (69, 71). The Fzd-Dvl complex influences
Prickle1-Rictor complex via cooperation with Smurf2, which can
ubiquitinate and degrade Pk1. The Pk1 can also mediate down-
regulation of RhoA activity, which influences protrusive activity of
the cell, and therefore promotes cell migration (71). Also worth
mentioning is the correlation of noncanonical Wnt pathway, pro-
inflammatory cytokines and EMT process. Wnt pathway,
especially noncanonical part is highly associated with epithelial-
mesenchymal transition. The similar role was discovered for pro-
inflammatory cytokine IL-8 which can trigger EMT process via
several cellular pathways. One of them is Wnt signaling pathway
which can be activated by overexpression of IL-8 (72). The
positive correlation of high expression of IL-8 and subsequently
Wnt pathway what lead to EMT process and finally to metastasis
was proven in many cancer types (73).

WNT/CA2+ SIGNALING

Structure

Non-canonical calcium-dependent Wnt pathway is β-catenin
independent, however Fzd and Wnt proteins are strongly involved
in its signaling. The molecular significance is to control gene
expression by intracellular deposit of calcium. In Wnt calcium

signaling pathway, the Fzd protein is connected with trimeric G-
protein that translocates signal to phospholipase C (PLC) and to
main components of Wnt calcium pathway belonging to calcium
related proteins: 1,2 diacylglycerol (DAG), inositol 1,4,5-
triphosphate (IP3) and calcium calmodulin dependent protein
kinase II (CaMKII). The final effectors of Wnt calcium pathway
molecules are transcription factors, such as: nuclear factor
associated with T cells (NFAT), NFκB and CREB (Fig. 2).

Mechanism

The molecular mechanism of calcium Wnt pathway is
slightly different than PCP pathway because the key aspect is a
regulation of intracellular level of calcium. After Wnt protein
binding to Frizzled receptor the signal is translocated to
Disheveled and G proteins. In this pathway transmembrane
located co-receptor, ROR2 kinase inhibits canonical pathway as
a consequence of Wnt5a binding (74). As it has been shown on
Fig. 2, signal from G protein is translocated by phospholipase C
leading to increase in concentration of signaling molecules:
DAG, IP3 and Ca2+. Calcium ions subsequently activate
CaMKII, similarly as DAG activates protein kinase C (PKC)
(75). CaMKII and PKC activate transcription factors NFκB and
CREB. Calcium ions mobilized by IP3 can activate protein
phosphatase calcinurin (CaN) that activates cytoplasmic protein
NFAT . Activated NFAT may upregulate the expression of
several genes in neurons, cardiac and skeletal muscle cells, and
pro-inflammatory genes in lymphocytes (76, 77).

Mode of action in development

The biological role of Wnt/Ca2+ signaling is the least known
among all Wnt signaling pathways family, but its impact on
development is remarkable. When Wnt11 or Wnt5 levels are low,
the intracellular calcium signaling also dramatically decreases (78,
79). Study conducted on Xenopus and Zebrafish embryos showed
high impact of Wnt5 and Fzd5 on body axis formation, where both
Wnt5 and Fzd5 are necessary for proper formation of secondary
body axis (80). Expression of calmodulin dependent protein
kinase II (CaMKII) in the blastula of Xenopus embryo is dorso-
ventral dependent with higher expression on ventral side. It has
been proven that when CaMKII is down-regulated on the ventral
side, dorsal cell fate is prominent, so calcium Wnt signaling
pathway promotes ventral cell fate during embryogenesis (81).

Mode of action in cancer

Depending on the cell type and current receptor availability,
Wnt5a serves as a proto-oncogene or a tumor suppressor gene
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Esophagogastric 
malignancies 

NCT02013154 Phase I: recruiting Study open for 
recruitment. 

Advanced biliary cancer NCT02375880 Phase I: active,  
not recruiting 

Study still ongoing. 

Ovarian cancer NCT03395080 Phase II: recruiting Study open for 
recruitment. 
 

BHQ880 Monoclonal antibody 
targeting DKK1 

Multiple myeloma NCT00741377 Phase Ib/II: completed Drug was well tolerated 
and demonstrated potential 
clinical activity 

High risk smoldering 
multiple myeloma 

NCT01302886 
 

Phase II: completed 
 

No significant anti-
myeloma effect was 
observed; BHQ880 
showed anabolic bone 
activity in 4/5 patients. 

Multiple myeloma NCT01337752 Phase II: completed Results not yet reported. 

 



(82). Abnormal expression of Wnt5a does not always directly
lead to a loss of function, gain of function, gene amplification or
rearrangement (83). The Wnt5a acts as a proto-oncogene in
breast cancer (84), melanoma (66), prostate cancer (85) and
pancreatic cancer (86). On the other hand tumor suppressing
function of Wnt5a has been found in breast cancer (87), colon
carcinoma (88), thyroid carcinoma (89), acute lymphoblastic
lymphoma (90), acute myeloid lymphoma (91), esophageal
squamous cell carcinoma (92) and neuroblastoma (93).

Wnt/β-catenin signaling pathway is up-regulated in many
cancers. However, prognosis is often correlated with
simultaneous down-regulation of Wnt/Ca2+ signaling (94).

One of the most interesting examples of tumor suppressing
role of the Wnt5a gene was found during experiments on murine
model of basal cell carcinoma (BCC) (95). The BCC develops in
a knock-out mutant mouse with a persistently active hedgehog
signaling pathway,. however activation of the Wnt5a signaling
cascade could be therefore important for tumor regression, and
could inhibit hedgehog signaling.

It was noted, that Wnt5a expression is required for proper
embryonic development, serving as a proto-oncogene (96). In
knock-out mouse deprived of Wnt5a gene function, multiple
developmental abnormalities have been observed. However, in
melanoma with upregulated Wnt5a signaling, invasiveness,
increased cell motility and change in cell morphology were
observed. These properties were mediated by the PCK showing
its relation with calcium signaling (84, 97). In prostate cancer
cell lines up-regulation of Wnt5a was caused due to
hypomethylation of the Wnt5a promoter region (98). These
modified cancer cells are more motile and invasive, they also
have different morphology. Researchers found, that these
changes are regulated by Ca2+/CaMKII.

MODULATION OF WNT SIGNALING BY IMMUNE CELLS

Impaired Wnt pathway in immune and cancer cells mainly
plays a pro-tumor role. In melanoma a correlation between
high β-catenin activity and low anti-tumor respond of T-cells
and decreased infiltration of dendritic cells have been reported
(99). Moreover, increased IL-12 production due to β-catenin
pathway activation in melanoma cells impairs dendritic cell
maturation (100).

Tumor associated macrophages (TAMs) can influence
cancer cells by modulating Wnt pathway. Macrophages in
murine mammary cancer secrete Wnt-5a, which induces MMP-
7 expression in cancer cells and facilitates invasion (84). Ojalvo
et al. showed that TAMs enhances vasculogenesis by secreting
Wnt-7b (101). Our previous microarray analyses showed
increased Wnt-5b, Wnt-7a, and Wnt-7b expression in
macrophages due to co-culture with cancer cells (102). We have
also showed effect of TAMs on canine mammary cancer stem-
like cells enhancing their pro-angiogenic properties and
modulating Wnt/β-catenin signaling (103).

Canine mammary cancer study revealed that TAMs can
regulate Wnt pathway in tumor cells. As mentioned before,
canonical Wnt pathway is frequently up-regulated in cancer cells
resulting in uncontrolled cells divisions, tumor growth and
increased inflammation. Biological role of macrophages is to
stop this process by secreting Wnt proteins to inhibit canonical
pathway. Proteins upregulated in macrophages, such as Wnt-5a
and Wnt-2a belong to canonical pathway inhibitors and non-
canonical activators. Macrophages effectively limit divisions of
cancer cells by inhibition of canonical Wnt pathway but they
also increase activity of non-canonical Wnt pathway. Increased
activity of β-catenin independent signals in cancer cells results
in their differentiation, polarization and finally separation from

tumor by epithelial-mesenchymal transition with subsequent
metastasis (104).

Yeo and co-workers found the crucial role of Wnt7b in breast
cancer angiogenic switch and metastasis. They found high
expression of Wnt7b both in cancer cells TAM. After knock-
down of Wnt7b in myeloid cells expression of Wnt/β-catenin
pathway genes in tumor remained almost stable. But lack of
Wnt7b expression in myeloid cells resulted in breakdown of
angiogenic switch. They observed also decreased tumor lung
metastasis mediated by TAMs. These results suggest high impact
of Wnt pathway regulation mediated by myeloid cells on
angiogenesis and metastasis of breast cancer cells (105).

Neutrophils and macrophages are known for their pro-
metastasis role in tumors. In vitro study on cancer cells found
that the DKK1, the main Wnt pathway inhibitor (Fig. 1),
influenced secretion of chemoattractant for granulocytes and
macrophages. When DKK1 expression is decreased, cancer cells
secrete compounds increasing recruitment of macrophages and
granulocytes. However, when DKK1 is overexpressed the result
is opposite. Zhang et al. found this mechanism important for
breast cancer metastasis (106).

TARGETING THE WNT SIGNALING PATHWAY 
IN THERAPY

Considering the role of the Wnt pathway in carcinogenesis,
targeting Wnt signaling is a promising therapeutic approach.
However, great complexity of the pathway and wide range of
responses induced by Wnt signals are a major challenges that
must be considered. Here we describe several examples of novel
therapeutics targeting various components of the Wnt pathway
in clinical trials for cancer treatment.

LGK974 (WNT974)

LGK974 is a PORCN inhibitor developed by Novartis. In
preclinical studies, treatment with LGK974 caused regression of
Wnt-related tumors in rats (107) and it was the first PORCN
inhibitor approved for clinical trials. Phase I study which
purpose is to find recommended dose of LGK974 in patients
with solid malignancies is still ongoing (NCT01351103).
Results from 68 enrolled patients have been reported.
Measurement of AXIN2 which is β-catenin target gene showed
Wnt pathway inhibition at a wide range of doses (108). Phase
Ib/II clinical trial that assessed safety and anti-tumor activity of
the triple combination of LGK974, LGX818 and cetuximab in
patients with BRAFV600-mutant metastatic colorectal cancer
with RNF43 mutations or RSPO fusions is completed, however
results have not yet been reported (NCT02278133).

ETC-159 (ETC-1922159)

ETC-159 is another PORCN inhibitor that blocks secretion
and activity of all Wnt proteins. Preclinical study showed, that
ETC-159 was very effective in treating colorectal cancer (CRC)
patient-derived xenografts with RSPO-translocation in mice
(109). Phase Ia/b clinical trial that will evaluate safety and
maximal/recommended doses of ETC-159 in patients with
advanced or metastatic, or unresectable solid malignancies is
now recruiting (NCT02521844).

Cirmtuzumab (UC-961)

UC-961 is a humanized antibody targeting receptor
tyrosine kinase-like orphan receptor 1 (ROR1), a coreceptor in
the Wnt signaling pathway. Phase I clinical trial evaluated
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safety of Cirmtuzumab in patients with intractable chronic
lymphocytic leukemia (NCT02222688). Drug was well
tolerated and had a long half-life. Generally patients had
sustained stabilization of disease after treatment with
Cirmtuzumab and had a long progression-free survival (110).
Another Phase 1b/2 clinical trial is open for recruitment and
will evaluate safety and effectiveness of Cirmtuzumab in
combination with Ibrutinib in patients with B-cell lymphoid
malignancies (NCT03088878). Cirmtuzumab will also be
studied in combination with paclitaxel in patients with
metastatic or locally advanced, unresectable breast cancer
(NCT02776917).

OTSA 101-DTPA-90Y

OTSA 101 was developed by OncoTherapy Science Inc. and
it is a chimeric humanized monoclonal antibody targeting
Frizzled 10 receptor. Non-radiolabeled OTSA 101 has weak
antagonistic effect on synovial sarcoma cells, however Yttrium
90-radiolabeled anti-FZD10 antibody showed significant
antitumor activity following single intravenous injection in mice
with human xenografts (111). OTSA 101-DTPA-90Y was
investigated in Phase I clinical trial (Clinicaltrials.gov
NCT01469975), that evaluated biodistribution, tumor targeting,
safety and optimal recommended dose of OTSA101-DTPA-90Y
in the treatment of synovial sarcoma. In the report from Phase I,
results of treatment of 16 patients with progressive metastatic
synovial sarcoma resistant to doxorubicin were analyzed. Death
occurred in 2/7 treated and in 6/7 untreated patients (112).

Vanituctumab (OMP-18R5)

OMP-18R5 is a human monoclonal antibody developed by
OncoMed Pharmaceuticals initially identified as anti-Fz7
antibody, but later found to interact with five Fzd receptors (Fz1,
Fz2, Fz5, Fz7, Fz8). It blocks canonical Wnt signaling (113).
Four Phase I clinical trials have been completed. Results from
study of Vantictumab in patients with solid tumors
(NCT01345201) showed that drug was well tolerated up to 2.5
mg/kg q3w and observed bone toxicity appeared manageable
and reversible (114). In other clinical trial, Vanituctumab was
studied in combination with chemotherapy. Vanituctumab was
shown to be safe in combination with nab-paclitaxel and
gemcitabine in patients with stage IV pancreatic cancer
(NCT02005315) (115) and in combination with paclitaxel in
patients with 1st to 3rd-line metastatic HER2-negative breast
cancer (NCT01973309) (116). Results from study of study of
Vantictumab in combination with docetaxel in patients with
previously treated non-small cell lung cancer have yet to be
reported (NCT01957007).

Ipafricept (OMP-54F28)

OMP-54F28 is a fusion protein comprised of a cysteine-rich
domain of Fzd8 receptor and the human immunoglobulin Fc
domain. OMP-54F28 competes with the Fzd8 receptor for its
ligand, thereby antagonizing Wnt signaling. In preclinical
studies on a patient-derived hepatocellular carcinoma and
ovarian cancer xenografts models, OMP-54F28 demonstrated
anti-tumor activity (117). In a completed phase I clinical trial,
OMP-54F28 was studied in patients with solid tumors. Drug was
well tolerated and 20 mg/kg dose was established in this study
(11). In other Phase I clinical trials OMP-54F28 was studied in
combination with sorafemib in patients with hepatocellular
cancer (NCT02069145) and in combination with paclitaxel and
carboplatin in patients with ovarian cancer (NCT02092363).
Drug was well tolerated in combination with paclitaxel and

carboplatin (118). Phase I study of OMP-54F28 in combination
with nab-paclitaxel and gemcitabine in patients with pancreatic
cancer is still ongoing (NCT02050178).

Niclosamide

Niclosamide is an approved drug for parasitic infections. It
has been shown that niclosamide promotes Frizzled1
endocytosis, downregulates Disheveled, induces LRP6
degradation and inhibits Wnt/β-catenin pathway (119-121). In
mice implanted with human colorectal cancer xenografts,
niclosamide administered orally led to tumor control and was
well tolerated (120). Niclosamide is investigated in clinical trial
(NCT02687009), that evaluates its safety in patients with colon
cancer undergoing primary resection of their tumor. This is
phase I study, and is now open for recruitement.

DKN-01

DKN-01 is a humanized monoclonal antibody against Wnt
antagonist Dickkopf-related protein 1 (DKK1) developed by
HealthCare Pharmaceuticals. DKK1 upregulation is related with
canonical Wnt/β-catenin signaling inhibition (122). DKN-01
inhibits DKK1 and restores Wnt pathway through an increase of
β-catenin signaling (123, 124). Clinical trials were carried out to
evaluate safety of DKN-01 in monotherapy or in combination
with other drugs in various tumor types.

Phase I study of DKN-01 in combination with lenalidomide
and dexamethasone (NCT01711671) conducted in patients with
relapsed or refractory multiple myeloma is complete. Drug was
well tolerated in 7/8 patients and the overall response rate was
57.1% (4/7) (125). Another Phase I study evaluated DKN-01 in
patients with multiple myeloma, advanced solid tumors and
relapsed or refractory non-small cell lung cancer
(NCT01457417). DKN-01 was well tolerated and demonstrated
clinical activity in non-small cell lung cancer (126). Active
Phase I study evaluates the safety and tolerability of DKN-01 in
combination with paclitaxel or pembrolizumab in patients with
relapsed or refractory esophagogastric malignancies is now open
for recruitment (NCT02013154). Another active Phase I study
evaluates anti-tumor activity of DKN-01 in combination with
gemcitabine and cisplatin in patients with carcinoma primary to
the intra- or exta-hepatic biliary system or gallbladder
(NCT02375880). Phase II clinical trial will evaluate safety and
efficacy of DKN-01 as a monotherapy or in combination with
paclitaxel in patients with relapsed or refractory endometrioid
endometrial or endometrioid ovarian cancer (NCT03395080).

BHQ880

BHQ880, developed by Novartis is another monoclonal
antibody targeting DKK1 protein. Phase Ib study of BHQ880 in
combination with zoledronic acid and anti-myeloma therapy in
patients with relapsed or refractory multiple myeloma
(NCT00741377) was well tolerated and demonstrated potential
clinical activity (127). In monotherapy, BHQ880 was studied in
Phase II clinical trial (NCT01302886) in patients with
smoldering multiple myeloma at high risk of progression to
active multiple myeloma. No significant anti-myeloma effect
was observed, however single-agent BHQ880 showed anabolic
bone activity in 4/5 patients (128). Considering that osteolytic
bone disease affects more than 80% of patients with multiple
myeloma and has negative impact on the overall survival,
BHQ880 could be used in combination with other therapeutics
(129). Other Phase II study of BHQ880 in patients with
untreated multiple myeloma and renal insufficiency is completed
with results yet to be published (NCT01337752).
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CONCLUSIONS AND FUTURE DIRECTIONS

Although none of described therapies have been approved
for clinical use, available data from clinical studies show that
targeting Wnt signaling is a promising therapeutic approach.
Even if targeting Wnt pathway alone may not be sufficient for
cancer treatment, combination with chemotherapy may have
synergistic effect. Particularly appealing strategy is a potential
for Wnt inhibitors to eliminate cancer stem cells, which will
sensitize resistant tumors to conventional therapies (130, 131).
Major problem that has to be considered is a potential toxicity of
Wnt alteration. For example, Wnt pathway plays fundamental
role in bone metabolism, thus inhibition of Wnt modulators can
increase risk of skeletal fractures (132). Despite the safety
concerns, our knowledge of this pathway is rapidly increasing,
which will hopefully led to precise therapeutic targeting of Wnt
signaling pathway.
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