Skip to main content
Log in

Keeping Pace with ACE

Are ACE Inhibitors and Angiotensin II Type 1 Receptor Antagonists Potential Doping Agents?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a ‘human gene for physical performance’, there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE ‘insertion’ allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (V̇O2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the ‘deletion’ allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes.

Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers — ARBs]) that have the ability to either reduce ACEplasma activity or block the action of angiotensin II, the question is relevant to the study of ergogenic agents and to the efforts to rid sports of ‘doping’. This article discusses the possibility that ACE inhibitors and ARBs, by virtue of their effects on ACE or angiotensin II function, respectively, have performance-enhancing capa. bilities; it also reviews the data on the effects of these medications on V̇O2max, muscle composition and endurance capacity in patient and nonpatient populations. We conclude that, while the direct evidence supporting the hypothesis that ACE-related medications are potential doping agents is not compelling, there are insufficient data on young, athletic populations to exclude the possibility, and there is ample, albeit indirect, support from genetic studies to suggest that they should be. Unfortunately, given the history of drug experimentation in athletes and the rapid appropriation of therapeutic agents into the doping arsenal, this indirect evidence, coupled with the availability of ACE-inhibiting and ACE-receptor blocking medications may be sufficiently tempting to unscrupulous competitors looking for a shortcut to the finish line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Taylor RR, Mamotte CD, Fallon K, et al. Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol 1999; 87 (3): 1035–7

    PubMed  CAS  Google Scholar 

  2. Woods D, Hickman M, Jamshidi Y, et al. Elite swimmers and the D allele of the ACE I/D polymorphism. HumGenet 2001; 108 (3): 230–2

    PubMed  CAS  Google Scholar 

  3. Diet F, Graf C, Mahnke N, et al. ACE and angiotensinogen gene genotypes and left ventricular mass in athletes. Eur JClin Invest 2001; 31 (10): 836–42

    CAS  Google Scholar 

  4. Scanavini D, Bernardi F, Castoldi E, et al. Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. Eur J Hum Genet 2002; 10 (10): 576–7

    PubMed  CAS  Google Scholar 

  5. Rankinen T, Wolfarth B, Simoneau JA, et al. No association between the angiotensin-converting enzyme IDpolymorphism and elite endurance athlete status. J Appl Physiol 2000; 88 (5): 1571–5

    PubMed  CAS  Google Scholar 

  6. Lucia A, Gomez-Gallego F, Chicharro JL, et al. Is there an association between ACE andCKMMpolymorphisms andcycling performance status during 3-week races? Int J Sports Med 2005; 26 (6): 442–7

    PubMed  CAS  Google Scholar 

  7. Woods DR, Brull D, Montgomery HE. Endurance and the ACE I/D polymorphism. Sci Prog 2000; 83: 317–36

    PubMed  CAS  Google Scholar 

  8. Jones A, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype? Exerc Sport Sci Rev 2002; 30 (4): 184–90

    PubMed  Google Scholar 

  9. Kurdi M, De Mello WC, Booz GW. Working outside the system: an update on the unconventional behavior of therenin-angiotensin system components. Int J Biochem Cell Biol 2005; 37 (7): 1357–67

    PubMed  CAS  Google Scholar 

  10. Danser AH, Batenburg WW, van den Meiracker AH, et al. ACE phenotyping as a first step toward personalizedmedicine for ACE inhibitors. Why does ACE genotypingnot predict the therapeutic efficacy of ACE inhibition?Pharmacol Ther 2007; 113 (3): 607–18

    PubMed  CAS  Google Scholar 

  11. Cambien F, Alhenc-Gelas F, Herbeth B, et al. Familial resemblance of plasma angiotensin-converting enzymelevel: the Nancy Study. Am J Hum Genet 1988; 43 (5): 774–80

    PubMed  CAS  Google Scholar 

  12. Reneland R, Lithell H.Angiotensin-converting enzyme in human skeletal muscle: a simple in vitro assay of activity inneedle biopsy specimens. Scand J Clin Lab Invest 1994; 54(2): 105–11

    PubMed  CAS  Google Scholar 

  13. Danser AH. Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol 2003; 35 (6): 759–68

    PubMed  CAS  Google Scholar 

  14. Van Kats JP, Duncker DJ, Haitsma DB, et al. Angiotensinconverting enzyme inhibition and angiotensin II type 1receptor blockade prevent cardiac remodeling in pigs aftermyocardial infarction: role of tissue angiotensin II. Circulation 2000; 102 (13): 1556–63

    PubMed  Google Scholar 

  15. Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature 1998; 393: 221–2

    PubMed  CAS  Google Scholar 

  16. Rupert JL, Kidd KK, Norman LE, et al. Genetic polymorphisms in the renin-angiotensin system in high-altitudeand low-altitude Native American populations. Ann Hum Genet 2003; 67 (1): 17–25

    PubMed  CAS  Google Scholar 

  17. Gesang L, Liu G, Cen W, et al. Angiotensin-converting enzyme gene polymorphism and its association with essentialhypertension in a Tibetan population. HypertensRes 2002; 25 (3): 481–5

    PubMed  CAS  Google Scholar 

  18. Cai Q, Liu HJ, Jiang MC, et al. A study of insertion/ delation polymorphism of the angiotensin-convertingenzyme gene in pilots [in Chinese]. Yi Chuan 2002; 24(1): 6–8

    PubMed  CAS  Google Scholar 

  19. Gayagay G, Yu B, Hambly B, et al. Elite endurance athletes and the ACE I allele: the role of genes in athletic performance. Hum Genet 1998; 103 (1): 48–50

    PubMed  CAS  Google Scholar 

  20. Alvarez R, Terrados N, Ortolano R, et al. Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol 2000; 82 (1-2): 117–20

    PubMed  CAS  Google Scholar 

  21. Collins M, Xenophontos SL, Cariolou MA, et al. The ACE gene and endurance performance during the South African Ironman Triathlons. Med Sci Sports Exerc 2004; 36 (8): 1314–20

    PubMed  CAS  Google Scholar 

  22. Nazarov IB, Woods DR, Montgomery HE, et al. The angiotensin converting enzyme I/D polymorphism in Russianathletes. Eur J Hum Genet 2001; 9 (10): 797–801

    PubMed  CAS  Google Scholar 

  23. Scott RA, Moran C, Wilson RH, et al. No association between angiotensin converting enzyme (ACE) genevariation and endurance athlete status in Kenyans. Comp Biochem Physiol A Mol Integr Physiol 2005; 141 (2): 169–75

    PubMed  Google Scholar 

  24. Amir O, Amir R, Yamin C, et al. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp Physiol 2007; 92 (5): 881–6

    PubMed  CAS  Google Scholar 

  25. Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance.J Appl Physiol 1999; 87 (4): 1313–6

    PubMed  CAS  Google Scholar 

  26. Forrester T, McFarlane-Anderson N, Bennett FI, et al. The angiotensin converting enzyme and blood pressure inJamaicans. Am J Hypertens 1997; 10 (5 Pt 1): 519–24

    PubMed  CAS  Google Scholar 

  27. Payne JR, Dhamrait SS, Gohlke P, et al. The impact of ACE genotype on serum ACE activity in a blackSouth African male population. Ann Hum Genet 2007; 71 (Pt 1): 1–7

    PubMed  CAS  Google Scholar 

  28. Woods DR, Humphries SE, Montgomery HE. The ACE I/D polymorphism and human physical performance. Trends Endocrinol Metab 2000; 11 (10): 416–20

    PubMed  CAS  Google Scholar 

  29. Dekany M, Harbula I, Berkes I, et al. The role of insertion allele of angiotensin converting enzyme gene in higherendurance efficiency and some aspects of pathophysiologicaland drug effects. Curr Med Chem 2006; 13 (18): 2119–26

    PubMed  CAS  Google Scholar 

  30. Sayed-Tabatabaei FA, Oostra BA, Isaacs A, et al. ACE polymorphisms. Circ Res 2006; 98 (9): 1123–33

    PubMed  CAS  Google Scholar 

  31. Montgomery H, Brull D. Gene-environment interactions and the response to exercise. Int J Exp Pathol 2000; 81 (5): 283–7

    PubMed  CAS  Google Scholar 

  32. Williams AG, Rayson MP, Jubb M, et al. The ACE gene and muscle performance. Nature 2000; 403 (6770): 614

    PubMed  CAS  Google Scholar 

  33. Woods DR, World M, Rayson MP, et al. Endurance enhancement related to the human angiotensin I-convertingenzyme I-D polymorphism is not due to differences in thecardiorespiratory response to training. Eur J Appl Physiol 2002; 86 (3): 240–4

    PubMed  CAS  Google Scholar 

  34. Thompson PD, Tsongalis GJ, Ordovas JM, et al. Angiotensin- converting enzyme genotype and adherence toaerobic exercise training. Prev Cardiol 2006; 9 (1): 21–4

    PubMed  Google Scholar 

  35. Folland J, Leach B, Little T, et al. Angiotensin-converting enzyme genotype affects the response of human skeletalmuscle to functional overload. Exp Physiol 2000; 85 (5): 575–9

    PubMed  CAS  Google Scholar 

  36. Thomis MA, Huygens W, Heuninckx S, et al. Exploration of myostatin polymorphisms and the angiotensin-convertingenzyme insertion/deletion genotype in responses ofhuman muscle to strength training. Eur J Appl Physiol 2004; 92 (3): 267–74

    PubMed  CAS  Google Scholar 

  37. Pescatello LS, Kostek MA, Gordish-Dressman H, et al. ACE ID genotype and the muscle strength and sizeresponse to unilateral resistance training. Med Sci Sports Exerc 2006; 38 (6): 1074–81

    PubMed  CAS  Google Scholar 

  38. Sonna LA, Sharp MA, Knapik JJ, et al. Angiotensinconverting enzyme genotype and physical performanceduring US Army basic training. J Appl Physiol 2001; 91 (3): 1355–63

    PubMed  CAS  Google Scholar 

  39. Montgomery HE, Clarkson P, Dollery C, et al. Association of angiotensin-converting enzyme gene I/D polymorphismwith change in left ventricular mass in response to physicaltraining. Circulation 1997; 96 (3): 741–7

    PubMed  CAS  Google Scholar 

  40. Jasinska A, Krzyzosiak WJ. Repetitive sequences that shape the human transcriptome. FEBS Lett 2004; 567 (1): 136–41

    PubMed  CAS  Google Scholar 

  41. Rajeevan H, Osier MV, Cheung KH, et al. ALFRED: the ALelle FREquency Database: update. Nucleic Acids Res 2003; 31 (1): 270–1

    PubMed  CAS  Google Scholar 

  42. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/ deletion in the angiotensin I-converting enzymegene accounting for half the variance of serum enzymelevels. J Clin Invest 1990; 86: 1343–6

    PubMed  CAS  Google Scholar 

  43. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensinconverting enzyme in the human heart: effect of the deletion/insertion polymorphism. Circulation 1995; 92 (6): 1387–8

    PubMed  CAS  Google Scholar 

  44. Bloem LJ, Manatunga AK, Pratt JH. Racial difference in the relationship of an angiotensin I-converting enzymegene polymorphism to serum angiotensin I-convertingenzyme activity. Hypertension 1996; 27 (1): 62–6

    PubMed  CAS  Google Scholar 

  45. Foy CA, McCormack LJ, Knowler WC, et al. The angiotensin- I converting enzyme (ACE) gene I/D polymorphismand ACE levels in Pima Indians. J Med Genet 1996; 33: 336–7

    PubMed  CAS  Google Scholar 

  46. Faure-Delanef L, Baudin B, Beneteau-Burnat B, et al. Plasma concentration, kinetic constants, and gene polymorphismof angiotensin I-converting enzyme in centenarians. Clin Chem 1998; 44 (10): 2083–7

    PubMed  CAS  Google Scholar 

  47. Tamura T, Johanning GL, Goldenberg RL, et al. Effect of angiotensin-converting enzyme gene polymorphism onpregnancy outcome, enzyme activity, and zinc concentration.Obstet Gynecol 1996; 88 (4 Pt 1): 497–502

    PubMed  CAS  Google Scholar 

  48. Rossi GP, Narkiewicz K, Cesari M, et al. Genetic determinants of plasma ACE and renin activity in young normotensivetwins. J Hypertens 1999; 17 (5): 647–55

    PubMed  CAS  Google Scholar 

  49. Sayed-Tabatabaei FA, Schut AF, Hofman A, et al. A study of gene: environment interaction on the gene for angiotensinconverting enzyme — a combined functional andpopulation based approach. J Med Genet 2004; 41 (2): 99–103

    PubMed  CAS  Google Scholar 

  50. Williams AG, Day SH, Folland JP, et al. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sports Exerc 2005; 37 (6): 944–8

    PubMed  CAS  Google Scholar 

  51. Day SH, Gohlke P, Dhamrait SS, et al. No correlation between circulating ACE activity and V̇O2max or mechanical efficiency in women. Eur J Appl Physiol 2007; 99 (1):11–8

    Google Scholar 

  52. Suehiro T, Morita T, Inoue M, et al. Increased amount of the angiotensin-converting enzyme (ACE) mRNA originatingfrom the ACE allele with deletion. Hum Genet 2004;115 (2): 91–6

    PubMed  CAS  Google Scholar 

  53. Fedorova L, Fedorov A. Introns in gene evolution. Genetica 2003; 118 (2-3): 123–31

    PubMed  CAS  Google Scholar 

  54. Zhu X, Bouzekri N, Southam L, et al. Linkage and association analysis of angiotensin I-converting enzyme(ACE)-gene polymorphisms with ACE concentrationand blood pressure. Am J Hum Genet 2001; 68 (5): 1139–48

    PubMed  CAS  Google Scholar 

  55. Keavney B, McKenzie CA, Connell JM, et al. Measured haplotype analysis of the angiotensin-I converting enzymegene. Hum Mol Genet 1998; 71 (11): 1745–51

    Google Scholar 

  56. Koehle MS, Wang P, Guenette JA, et al. No association between variants in the ACE and angiotensin II receptor 1genes and acute mountain sickness in Nepalese pilgrims tothe Janai Purnima Festival at 4380 metres. High Alt Med Biol 2006; 7 (4): 281–9

    PubMed  CAS  Google Scholar 

  57. Cox R, Bouzekri N, Martin S, et al. Angiotensin-1-converting enzyme (ACE) plasma concentration is influencedby multiple ACE-linked quantitative trait nucleotides. Hum Mol Genet 2002; 11 (23): 2969–77

    PubMed  CAS  Google Scholar 

  58. Cam FS, Colakoglu M, Sekuri C, et al. Association between the ACE I/D gene polymorphism and physical performancein a homogeneous non-elite cohort. Can J Appl Physiol 2005; 30 (1): 74–86

    PubMed  CAS  Google Scholar 

  59. Kanaide H, Ichiki T, Nishimura J, et al. Cellular mechanism of vasoconstriction induced by angiotensin II: it remainsto be determined. Circ Res 2003; 93 (11): 1015–7

    PubMed  CAS  Google Scholar 

  60. Levy BI. How to explain the differences between renin angiotensin system modulators. Am J Hypertens 2005; 18 (9Pt 2): 134S–41S

    PubMed  CAS  Google Scholar 

  61. Hagberg JM, Ferrell RE, McCole SD, et al..V̇O2max isassociated with ACE genotype in postmenopausal women.J Appl Physiol 1998; 85 (5): 1842–6

    PubMed  CAS  Google Scholar 

  62. Roltsch MH, Brown MD, Hand BD, et al. No association between ACE I/D polymorphism and cardiovascular hemodynamicsduring exercise in young women. Int J Sports Med 2005; 26 (8): 638–44

    PubMed  CAS  Google Scholar 

  63. Rankinen T, Pérusse L, Gagnon J, et al. Angiotensinconverting enzyme ID polymorphism and fitness phenotypein the HERITAGE Family Study. J Appl Physiol 2000; 88: 1029–35

    PubMed  CAS  Google Scholar 

  64. Zhao B, Moochhala SM, Tham S, et al. Relationship between angiotensin-converting enzyme ID polymorphismand.V̇O2max of Chinese males. Life Sci 2003; 73 (20):2625–30

    PubMed  CAS  Google Scholar 

  65. Zhang B, Tanaka H, Shono N, et al. The I allele of the angiotensin-converting enzyme gene is associated with anincreased percentage of slow-twitch type I fibers in humanskeletal muscle. Clin Genet 2003; 63 (2): 139–44

    PubMed  CAS  Google Scholar 

  66. Williams AG, Dhamrait SS, Wootton PT, et al. Bradykinin receptor gene variant and human physical performance. J Appl Physiol 2004; 96 (3): 938–42

    PubMed  CAS  Google Scholar 

  67. ACE Inhibitor Myocardial Infarction Collaborative Group (AIMIC). Indications for ACE inhibitorsin the early treatment of acute myocardial infarction:systematic overview of individual data from 100,000patients in randomized trials. Circulation 1998; 97 (22): 2202–12

    Google Scholar 

  68. McFarlane SI, Kumar A, Sowers JR. Mechanisms by which angiotensin-converting enzyme inhibitors preventdiabetes and cardiovascular disease. Am J Cardiol 2003; 91 (12A.): 30H–7H

    PubMed  CAS  Google Scholar 

  69. Hebert LA, Falkenhain ME, Nahman Jr NS, et al. ACE inhibitor and angiotensin II receptor antagonist therapy indiabetic nephropathy. Am J Nephrol 1999; 19 (1): 1–6

    PubMed  CAS  Google Scholar 

  70. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med 2002; 113 (5): 409–18

    PubMed  CAS  Google Scholar 

  71. Kramer C, Sunkomat J, Witte J, et al. Angiotensin II receptor- independent antiinflammatory and antiaggregatoryproperties of losartan: role of the active metaboliteEXP3179. Circ Res 2002; 90 (7): 770–6

    PubMed  Google Scholar 

  72. Louch WE, Ferrier GR, Howlett SE. Losartan improves recovery of contraction and inhibits transient inward currentin a cellular model of cardiac ischemia and reperfusion. J Pharmacol Exp Ther 2000; 295 (2): 697–704

    PubMed  CAS  Google Scholar 

  73. Opie LH. Angiotensin converting enzyme inhibitors. 3rd ed. Cape Town: University of Cape Town Press, 1999

    Google Scholar 

  74. Vescovo G, Dalla Libera L, Serafini F, et al. Improved exercise tolerance after losartan and enalapril in heartfailure: correlation with changes in skeletal musclemyosin heavy chain composition. Circulation 1998; 98 (17): 1742–9

    PubMed  CAS  Google Scholar 

  75. Corder CN, Rubler S, Deere LF, et al. Effect of cilazapril on exercise tolerance in congestive heart failure. Pharmacology 1993; 46 (3): 148–54

    PubMed  CAS  Google Scholar 

  76. Leon AS, McNally C, Casal DC, et al. Enalapril alone and combined with hydrochlorothiazide in the treatment ofhypertension: effect on treadmill exercise performance. J Cardiac Rehab 1986; 6: 251–6

    Google Scholar 

  77. Gordon NF, Myburgh DP, Neutral JM, et al. Comparison of captopril and conventional step I antihypertensive therapy:effects on exercise performance. J Cardiopulm Rehab 1988; 8: 108–15

    Google Scholar 

  78. Vanhees L, Fagard R, Lijnen P, et al. Effect of antihypertensive medication on endurance exercise capacityin hypertensive sportsmen. J Hypertens 1991; 9 (11): 1063–8

    PubMed  CAS  Google Scholar 

  79. Guazzi M, Palermo P, Pontone G, et al. Synergistic efficacy of enalapril and losartan on exercise performance andoxygen consumption at peak exercise in congestive heartfailure. Am J Cardiol 1999; 84 (9): 1038–43

    PubMed  CAS  Google Scholar 

  80. Pascual Figal DA, de la Morena Valenzuela G, Nicolas Ruiz F, et al. Addition of an angiotensin II receptor blockerto maximal dose of ACE inhibitors in heart failure. RevEsp Cardiol 2002; 55 (8): 862–6

    PubMed  Google Scholar 

  81. Munzel T, Kurz S, Drexler H. Are alterations of skeletal muscle ultrastructure in patients with heart failure reversibleunder treatment with ACE-inhibitors [in German]?Herz 1993; 18 Suppl. 1: 400–5

    Google Scholar 

  82. Aldigier JC, Huang H, Dalmay F, et al. Angiotensinconverting enzyme inhibition does not suppress plasmaangiotensin II increase during exercise in humans. J CardiovascPharmacol 1993; 21 (2): 289–95

    PubMed  CAS  Google Scholar 

  83. Fagard R, Lijnen P, Vanhees L, et al. Hemodynamic response to converting enzyme inhibition at rest and exercisein humans. J Appl Physiol 1982; 53 (3): 576–81

    PubMed  CAS  Google Scholar 

  84. Predel HG, Rohden C, Heine O, et al. ACE inhibition and physical exercise: studies on physical work capacity, energymetabolism, and maximum oxygen uptake in well-trained,healthy subjects. J Cardiovasc Pharmacol 1994; 23 Suppl.1: 25–S8

    Google Scholar 

  85. Carre F, Handschuh R, Beillot J, et al. Effects of captopril chronic intake on the aerobic performance and musclestrength of normotensive trained subjects. Int J Sports Med 1992; 13 (4): 308–12

    PubMed  CAS  Google Scholar 

  86. Sumukadas D, Witham MD, Struthers AD, et al. Effect of perindopril on physical function in elderly people withfunctional impairment: a randomized controlled trial. CMAJ 2007; 177 (8): 867–74

    PubMed  Google Scholar 

  87. Schaufelberger M, Andersson G, Eriksson BO, et al. Skeletal muscle changes in patients with chronic heartfailure before and after treatment with enalapril. Eur Heart J 1996; 17 (11): 1678–85

    PubMed  CAS  Google Scholar 

  88. Onder G, Vedova CD, Pahor M. Effects of ACE inhibitors on skeletal muscle. Curr Pharm Des 2006; 12 (16): 2057–64

    PubMed  CAS  Google Scholar 

  89. Di Bari M, Van De Poll-Franse LV, Onder G, et al. Antihypertensive medications and differences in muscle mass inolder persons: the Health, Aging and Body Compositionstudy. J Am Geriatr Soc 2004; 52 (6): 961–6

    PubMed  Google Scholar 

  90. Minami N, Mori N, Nagasaka M, et al. Effect of high-salt diet or chronic captopril treatment on exercise capacity innormotensive rats. Clin Exp Pharmacol Physiol 2004; 31 (4): 197–201

    PubMed  CAS  Google Scholar 

  91. Minami N, Li Y, Guo Q, et al. Effects of angiotensin-converting enzyme inhibitor and exercise training on exercise capacity and skeletal muscle. J Hypertens 2007; 25 (6): 1241–8

    PubMed  CAS  Google Scholar 

  92. Bahi L, Koulmann N, Sanchez H, et al. Does ACE inhibition enhance endurance performance and muscleenergy metabolism in rats? J Appl Physiol 2004; 96 (1): 59–64

    PubMed  CAS  Google Scholar 

  93. Rouyer O, Zoll J, Daussin F, et al. Effect of angiotensinconverting enzyme inhibition on skeletal muscle oxidativefunction and exercise capacity in streptozotocin-induceddiabetic rats. Exp Physiol 2007; 92 (6): 1047–56

    PubMed  CAS  Google Scholar 

  94. Hamroff G, Katz SD, Mancini D, et al. Addition of angiotensin II receptor blockade to maximal angiotensinconvertingenzyme inhibition improves exercise capacity inpatients with severe congestive heart failure. Circulation 1999; 99 (8): 990–2

    PubMed  CAS  Google Scholar 

  95. Cooke GA, Williams SG, Marshall P, et al. A mechanistic investigation of ACE inhibitor dose effects on aerobic exercisecapacity in heart failure patients. Eur Heart J 2002;23 (17): 1360–8

    PubMed  CAS  Google Scholar 

  96. Williams SG, Cooke GA, Wright DJ, et al. Disparate results of ACE inhibitor dosage on exercise capacity in heartfailure: a reappraisal of vasodilator therapy and study design. Int J Cardiol 2001; 77 (2-3): 239–45

    PubMed  CAS  Google Scholar 

  97. Ueda S, Meredith PA, Morton JJ, et al. ACE (I/D) genotype as a predictor of the magnitude and duration of theresponse to an ACE inhibitor drug (enalaprilat) in humans. Circulation 1998; 98 (20): 2148–53

    PubMed  CAS  Google Scholar 

  98. Nakano Y, Oshima T, Watanabe M, et al. I-converting enzyme gene polymorphism and acute response to captoprilin essential hypertension. Am J Hypertens 1997; 10 (9 Pt 1): 1064–8

    PubMed  CAS  Google Scholar 

  99. Taylor JS, Ellis GR. Racial differences in responses to drug treatment: implications for pharmacotherapy of heart failure. Am J Cardiovasc Drugs 2002; 2 (6): 389–99

    PubMed  CAS  Google Scholar 

  100. Benetos A, Cambien F, Gautier S, et al. Influence of the angiotensin II type 1 receptor gene polymorphism on theeffects of perindopril and nitrendipine on arterial stiffnessin hypertensive individuals. Hypertension 1996; 28 (6): 1081–4

    PubMed  CAS  Google Scholar 

  101. Hoogeveen AR. The effect of endurance training on the ventilatory response to exercise in elite cyclists. Eur J ApplPhysiol 2001; 82 (1-2): 45–51

    Google Scholar 

  102. Mutton DL, Loy SF, Rogers DM, et al. Effect of run vs combined cycle/run training on.V̇O2max and runningperformance. Med Sci Sports Exerc 1993; 25 (12): 1393–7

    PubMed  CAS  Google Scholar 

  103. Connes P, Perrey S, Varray A, et al. Faster oxygen uptake kinetics at the onset of submaximal cycling exercisefollowing 4 weeks recombinant human erythropoietin(r-HuEPO) treatment. Pflugers Arch 2003; 447 (2): 231–8

    PubMed  CAS  Google Scholar 

  104. Thomsen JJ, Rentsch RL, Robach P, et al. Prolonged administration of recombinant human erythropoietinincreases submaximal performance more thanmaximal aerobic capacity. Eur J Appl Physiol 2007; 101 (4): 481–6

    PubMed  CAS  Google Scholar 

  105. Cooper WO, Hernandez-Diaz S, Arbogast PG, et al. Major congenital malformations after first-trimesterexposure to ACE inhibitors. N Engl J Med 2006; 354 (23): 2443–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

PW is the recipient of a UBC University Graduate Fellowship. MNF is supported through research funds to JLR from the World Anti-Doping Agency (WADA). The authors have no conflicts of interest directly relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Fedoruk, M.N. & Rupert, J.L. Keeping Pace with ACE. Sports Med 38, 1065–1079 (2008). https://doi.org/10.2165/00007256-200838120-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838120-00008

Keywords

Navigation