Skip to main content

Advertisement

Log in

Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Nowadays, there has been immense progress in developing materials to support transplanted cells. Nevertheless, the complexity of tissues is far beyond what is found in the most advanced scaffolds. This article reviews the types of biomaterials and their resulting scaffolds in the bio-engineering of bone and tissues by presenting an overview of the characteristics of ideal scaffold in tissue engineering along with types of scaffolds and examples of previous studies where these scaffolds have been applied. The advantages of scaffolds, and the three-dimensional culture system and its used commercially available scaffold is presented. Challenges encountered in the application of these scaffolds in bone and tissue engineering is also highlighted. Used method was by acquisition of materials through Google scholar, Science direct, PubMed and University library archives. Proper knowledge of the above highlighted facts will go a long way in re-addressing the production of scaffolds for bone and tissue engineering. With the proliferation of innovative applications in bioactive glasses and glass ceramics, the greater need for specific understanding of cell biology with emphasis on cellular differentiation, cell to cell interaction and extracellular matrix formation in engineering of bone and tissues becomes inevitable. This will enhance scaffold production, bone regeneration and transplantation outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

ASTM:

American Society for Testing Material

BG:

bioactive glass

CAD:

computer-aided design

ECM:

extracellular matrix

GlcN:

D-glucosamine

GlcNAc:

N-acetyl-D-glucosamine

HAP:

hydroxyapatite

Hep3B:

human hepatoma 3B cells

m-BG:

micron-sized bioactive glass

MBG:

mesoporous bioactive glass

MSCs:

mesenchymal stem cells

n-BG:

nano-sized bioactive glass

OPF:

oligo-poly glycol-fumarate

PBT:

polybutylene terephthalate

PCL:

poly-ε-caprolactone

PDLLA:

poly-D-L-lactide

PEG:

polyethylene glycol

PGA:

poly-glycolide

PLA:

poly-lactic acids

PLGA:

poly-lactic-co-glycolic acid

PLLA:

poly-L-lactic acid

PPC:

polypropylene carbonate

PVA:

polyvinyl alcohol

SIS:

small intestinal sub-mucosa

TCP:

tricalcium phosphate

TGF-β1:

transforming growth factor beta 1

VEGF:

vascular endothelial growth factor

References

  • Adelöw C, Segura T., Hubbell J. & Frey P. 2008. The effect of enzymatically degradable poly (ethylene glycol) hydrogels on smooth muscle cell phenotype. Biomaterials 29: 314–326.

    Article  PubMed  CAS  Google Scholar 

  • Agholme L., Lindstrom T., Kagedal K., Marcusson J. & Hallbeck M. 2010. An in vitro model for neuroscience: differentiation of SH-SY5Y cells in cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis. 20: 1069–1082.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed T., Dare E. & Hincke M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Rev. 14: 199–215.

    Article  CAS  Google Scholar 

  • Alvarez K., Hyun S.K., Nakano T., Umakoshi Y. & Nakajima H. 2009. In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. 29: 1182–1190.

    Article  CAS  Google Scholar 

  • Ando T., Yamazoe H., Moriyasu K., Ueda Y. & Iwata H. 2007. Induction of dopamine-releasing cells from primate embryonic stem cells enclosed in agarose microcapsules. Tissue Eng. 13: 2539–2547.

    Article  CAS  PubMed  Google Scholar 

  • Arai K., Iwanaga S., Toda H., Genci C., Nishiyama Y. & Naka-mura M. 2011. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3: 034113.

  • Badylak S.F. 2004. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12: 367–377.

    Article  CAS  PubMed  Google Scholar 

  • Baino F. & Vitale-Brovarone C. 2011. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res. 97: 514–535.

    Article  CAS  Google Scholar 

  • Baino F. & Vitale-Brovarone C. 2014. Mechanical properties and reliability of glass-ceramic foam scaffolds for bone repair. Mater. Lett. 118: 27–30.

    Article  CAS  Google Scholar 

  • Baino F., Ferraris M., Bretcanu O., Verné E. & Vitale-Brovarone C. 2013. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J Biomater. Appl. 27: 872–890.

    Article  CAS  PubMed  Google Scholar 

  • Baino F., Marshall M., Kirk N & Vitale-Brovarone C. 2016. Design, selection and characterization of novel glasses and glass-ceramics for use in prosthetic applications. Ceram. Int. 42: 1482–1491.

    Article  CAS  Google Scholar 

  • Baino F., Novajra G. & Vitale-Brovarone C. 2015. Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 3: 202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baino F., Verne E. & Vitale-Brovarone C. 2009. 3-D high strength glass-ceramic scaffolds containing fluoroapatite for load-bearing bone portions replace-ment. Mater. Sci. Eng. 29: 2055–2062.

    Article  CAS  Google Scholar 

  • Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., Lopez-Puertas J.M. & Reddi A.H. 2010. Articular cartilage: structure and regeneration. Tissue Eng. Part B Rev. 16: 617.

    Article  CAS  PubMed  Google Scholar 

  • Berkland C, King M., Cox A., Kim K. & Pack D.W. 2002. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Cont. Rel. 82: 137–147.

    Article  CAS  Google Scholar 

  • Bhattarai S.R., Bhattarai N., Yi H.K., Hwang P.H., Cha D.I. & Kim H.Y. 2006. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials 25: 2595–2602.

    Article  CAS  Google Scholar 

  • Chen J., Xu J., Wang A. & Zheng M. 2009. Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev. Med. Devices 6: 61–73.

    Article  PubMed  Google Scholar 

  • Chen Q., Baino F., Spriano S., Pungno N.M. & Vitale-Brovarone C. 2014. Modelling of strength-porosity relationship in glass-ceramic foam scaffolds for bone repair. J. Eur. Ceram. Soc. 34: 2663–2673.

    Article  CAS  Google Scholar 

  • Chen Q. & Huang S. 2013. Mechanical properties of a porous bio-scaffold with hierarchy. Mater Lett. 95: 89–92.

    Article  CAS  Google Scholar 

  • Chiu Y., Larson J., Isom A. & Brey E. 2010. Generation of porous poly (ethylene glycol) hydrogels by salt leaching. Tissue Eng. Part C Methods 16: 905–912.

    Article  CAS  PubMed  Google Scholar 

  • Chung K., Mishra N., Wang C., Lin F. & Lin K. 2009. Fabricating scaffolds by microfluidics. Biomicrofluidics 3: 22403.

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal A. 2012. A comprehensive review of methods for 3D cell culture. Mater Methods 2: 162.

    Article  Google Scholar 

  • Discher D.E., Mooney D.J. & Zandstra P.W. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324: 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitriev R.I., Borisov S.M., Kondrashina A.V., Pakan J.M.P., Anilkumar U., Prehn J.H.M., Zhdanov A.V., McDermott K.W., Klimant I., Papkovsky D.B. 2015. Imaging oxygen in neural cell and tissue models by means of anionic cell permeable phosphorescent nanoparticles. Cell. Mol. Life Sci. 72: 367–381.

    Article  CAS  PubMed  Google Scholar 

  • Dolega M.E., Abeille F., Picollet-D’hahan N. & Gidrol X. 2015. Controlled 3D culture in Matrigel microbeads to analyse clonal acinar. Biomaterials 52: 347–357.

    Article  CAS  PubMed  Google Scholar 

  • Engler A.J., Sen S., Sweeney H.L. & Discher D.E. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689.

    Article  CAS  PubMed  Google Scholar 

  • Erol-Taygun M., Zheng K. & Boccaccini A.R. 2013. Nanoscale bioactive glasses in medical applications. Int. J. Appl. Glass Sci. 4: 136–148.

    Article  CAS  Google Scholar 

  • Fernandes H., Mentink A., Bank R., Stoop R., van Blitterwijk C. & de Boer J. 2010. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells. Tissue Eng. 16: 1693–1702.

    Article  CAS  Google Scholar 

  • Fielding G.A., Bandyopadhyay A. & Bose S. 2012. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater. 28: 113–122.

    Article  CAS  PubMed  Google Scholar 

  • Finger A.R., Sargent C.Y., Dulaney K.O., Bernacki S.H. & Loboa E.G. 2007. Differential effects on messenger ribonucleic acid expression by bone marrow-derived human mesenchymal stem cells seeded in agarose constructs due to ramped and steady applications of cyclic hydrostatic pressure. Tissue Eng. 13: 1151–1158.

    Article  CAS  PubMed  Google Scholar 

  • Fiorilli S., Baino F., Cauda V., Crepald M. & Vitale-Brovarone C. 2015. Electrophoretic deposition of mesoporous bioactive glass-ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26: 21.

    Article  CAS  Google Scholar 

  • Fischer S.N., Johnson J.K., Baran C.P., Newland C.A., Marsh C.B. & Lannutti J.J. 2011. Organ-derived coatings on electro-spun nanofibers as ex vivo microenvironments. Biomaterials 32: 538–546.

    Article  CAS  PubMed  Google Scholar 

  • Fu Q., Saiz E., Rahaman M.N. & Tomsia A.P. 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. 31: 1245–1256.

    Article  CAS  Google Scholar 

  • Fuchs S., Jiang X., Schmidt H., Dohle E., Ghanaati S. & Orth C. 2009. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 30: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • Gao C., Deng Y., Feng P., Mao Z., Li P. & Yang B. 2014. Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15: 4714–4732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia A., Izquierdo-Barba I., Colilla M., Laorden C. & Vallet-Regi M. 2013 Preperation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical mesomacroporosity. Acta Biomater. 7: 1265–1273.

    Article  CAS  Google Scholar 

  • Ge Z., Jin Z. & Cao T. 2008. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 3: 022001.

  • Gerhardt L.C. & Boccaccini A.R. 2010. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3: 3867–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guggisberg S., Benneker L.M., Keel M.J. & Gantenbein B. 2015. Mechanical loading promoted discogenic differentiation of human mesenchymal stem cells incorporated in 3D PEG scaffolds with rhGDF5 and RGD. Int. J. Stem Cell Res. Ther. 2: 1.

    Google Scholar 

  • Hadjipanayi E., Mudera V. & Brown R. 2009. Guiding cell migration in 3D: a collagen matrix with graded directional stiffness. Cell. Motil. Cytoskeleton 66: 121–128.

    Article  CAS  PubMed  Google Scholar 

  • He L., Liu B., Xipeng G., Xie G., Liao S., Quan D., Cai D., Lu J. & Ramakrishna S. 2009. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur. Cell. Mater. 18: 63–74.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann S., Hagenmuller H., Koch A.M., Muller R., Vunjak-Novakovic G., Kaplan D.L., Merkle H.P. & Meinel L. 2007. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28: 1152–1162.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y., Ren J., Chen C., Ren T. & Zhou X. 2008. Preparation and properties of poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J. Biomater. Appl. 22: 409–432.

    Article  CAS  PubMed  Google Scholar 

  • Hutmacher D.W. 2001. Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspective. J. Biomater. Sci. 12: 107–124.

    Article  CAS  Google Scholar 

  • Jacobs J.J., Skipor A.K., Patterson L.M., Hallab N.J., Paprosky W.G., Black J. & Galante J.O. 1998. Metal release in patients who have had a primary total hip arthroplasty. J. Bone Joint Surg. Am. 80: 1447–1458.

    Article  CAS  PubMed  Google Scholar 

  • Jaklenec A., Hinckfuss A., Bilgen B., Ciombor D.M., Aaron R. & Mathiowitz E. 2008. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds. Biomaterials 29: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  • Kaihara S., Matsumura S. & Fisher J.P. 2008. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur. J. Pharm. Biopharm 68: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Kang S. & Bae Y. 2009. Cryopreservable and tumorigenic three-dimensional tumor culture in porous poly (lactic-co-glycolic acid) microsphere. Biomaterials 30: 4227–4232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshaw H., Georgiou G., Blaker J.J., Forbes A. & Knowles J.C. 2009. Assessment of polymer/bioactive glass-composite mi-croporous spheres for tissue regeneration applications. Tissue Eng. 15: 1451–1461.

    Article  CAS  Google Scholar 

  • Kim S.S., Park M.S., Jeon O., Choi C.Y. & Kim B.S. 2006. Poly (lactide-co-lycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials 27: 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  • Kohlhauser C., Hellmich C., Vitale-Brovarone C., Boccaccini A.R., Rota A. & Eberhardsteiner J. 2009. Ultrasonic characterisation of porous biomaterials across different frequencies. Strain 45: 34–44.

    Article  Google Scholar 

  • Kopp A., Strobel S., Tortajada A., De Cordoba S.R., Sanchez-Corral P., Prohaszka Z., Lopez-Trascasa M. & Jozsi M. 2012. A typical hemolytic uremic syndrome associated variants and auto-antibodies impair binding of factor H and factor H related protein 1 to pentraxin 3. J. Immunol. 189: 1858–1867.

    Article  CAS  PubMed  Google Scholar 

  • Lacroix D., Chateau A., Ginebra M.P. & Planell J. A. 2006. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials 27: 5326–5334.

    Article  CAS  PubMed  Google Scholar 

  • Leigh S., Gilbert H., Barker I., Becker J., Richardson S., Hoyland J., Covington J. & Dove A. 2013. Fabrication of 3-dimensional cellular constructs via microstereolithography using a simple, three-component, poly (ethylene glycol) acrylate-based system. Biomacromolecules 14: 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Liu C., Xia Z. & Czernuszka J.T. 2007. Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Des. 85: 1051–1064.

    Article  CAS  Google Scholar 

  • Loh Q.L. & Choong C. 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. 19: 485–502.

    Article  CAS  Google Scholar 

  • Ma P.X. 2006. Scaffolds for tissue fabrication. Mater. Today 7: 30–40.

    Article  Google Scholar 

  • Ma P.X. & Zhang R. 2001. Microtubular architecture of biodegradable polymer scaffolds. J. Biomed. Mater. Res. 56: 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Malafaya P.B., Pedro A.J., Peterbauer A., Gabrie C, Redl H. & Reis R.L. 2005. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J. Mater. Sci. 16: 1077–1085.

    CAS  Google Scholar 

  • Malafaya P.B., Silva G.A. & Reis R.L. 2007. Natural origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering application. Adv. Drug Deliv. Rev. 59: 207–233.

    Article  CAS  PubMed  Google Scholar 

  • Manoto S.L., Houreld N.N. & Abrahamse H. 2015. Resistance of lung cancer cells grown as multicellular tumour spheroids to zinc sulfophthalocyanine photosensitization. Int. J. Mol. Sci. 16: 10185–10200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathes S.H., Wohlwend L., Uebersax L., Von Mentlen R., Thoma D.S. & Jung R.E. 2010. A bioreactor test system to mimic the biological and mechanical environment or oral soft tissues and to evaluate substitutes for connective tissue grafts. Biotechnol. Bioeng. 107: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  • Miguez-Pacheco V., Greenspan D., Hench L. L. & Boccaccini A. R. 2015. Bioactive glasses in soft tissue repair. Am. Ceram. Soc. Bull. 94: 27–31.

    CAS  Google Scholar 

  • Miguez-Pacheco V, Hench L.L. & Boccaccini A.R. 2015. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Motaung C.K.M., Cesare P.E. & Reddi H. 2011. Differential response of cartilage oligomeric matrix protein (COMP) to morphogens of bone morphogenetic protein/transforming growth factor-β family in the surface, middle and deep zones of articular cartilage. J. Tissue Eng. Regen. Med. 5: 87–96.

    Article  CAS  Google Scholar 

  • Natesan S., Baer D., Walters T., Babu M. & Christy R. 2010. Adipose-derived stem cell delivery into collagen gels using chitosan microspheres. Tissue Eng. 16: 1369–1384.

    Article  CAS  Google Scholar 

  • Nicholas J.E., Niles J., Riddle M., Vegas G., Schilagard T., Ma L., Edward K., La Francesca S., Sakamoto J., Vega S., Ogadegbe M., Mlcak R., Deyo D., Woodson L., McQuitty C, Lick S., Beckles D., Melo E. & Cortiella J. 2013. Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng. 19: 2045–2062.

    Article  CAS  Google Scholar 

  • Nugraha B., Hong X., Mo X., Tan L., Zhang W., Chan P.M. Kang C.H., Wang Y., Beng L.T., Sun W., Choudhury D., Robens J.M., McMillian M., Silva J., Dallas S., Tan C.H., Yue Z., Yu H. 2011. Galactosylated cellulosic sponge for multi well drug safety testing. Biomaterials. 32: 6982–6994.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien F.J. 2011. Biomaterials and scaffolds for tissue engineering. Mater. Today 14: 88–95.

    Article  CAS  Google Scholar 

  • Raghunath J., Rollo J., Sales K.M., Butler P.E. & Seifalian A.M. 2007. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 46: 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Renghini C., Giuliani A., Mazzoni S., Brun F., Larsson E., Baino F., Vitale-Brovarone C. 2013. Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-raymicrotomography. J. Eur. Ceram. Soc. 33: 1553–1565.

    Article  CAS  Google Scholar 

  • Renghini C., Komlev V., Fiori F., Verne E., Baino F., Vitale-Brovarone C. 2009. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration. Acta Biomater. 5: 1328–1337.

    Article  CAS  PubMed  Google Scholar 

  • Renier D., Bellato P., Bellini D., Pavesio A., Pressato D. & Bor-rione A. 2007. Pharmacokinetic behaviour of ACP gel, an autocrosslinked hyaluronan derivative, after intraperitoneal administration. Biomaterials 26: 5368–5374.

    Article  CAS  Google Scholar 

  • Rihmann M. & Graf-Hausner U. 2012. Synthetic 3D multicellular systems for drug development. Curr. Opin. Biotechnol. 23: 1–7.

    Article  CAS  Google Scholar 

  • Sabree I., Gough J.E. & Derby B. 2015. Mechanical properties of porous ceramic scaffolds: influence of internal dimensions. Ceram. Int. 41: 8425–8432.

    Article  CAS  Google Scholar 

  • Salerno A., Guarnieri D., Iannone M., Zeppetelli S. & Netti P. 2010. Effect of micro- and macroporosity of bone tissue three-dimensional-poly (epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng. 16: 2661–2673.

    Article  CAS  Google Scholar 

  • Sanz-Herrera J.A., Garcia-Aznar J.M. & Doblare M. 2008. A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech. Model Mechanobiol. 7: 355–66.

    Article  CAS  PubMed  Google Scholar 

  • Saw K.Y., Anz A., Siew-Yoke J.C., Mericans S., Ching-Song R., Roohi S.A. & Ragavanaidu K. 2013. Articular Cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29: 684–694.

    Article  PubMed  Google Scholar 

  • Scheiner S., Sinibaldi R., Pichler B., Komlev V., Renghini C., Vitale-Brovarone C., Rustichelli F. & Hellmich C. 2009. Mi-cromechanics of bone tissue-engineering scaffolds based on resolution error-cleared computer tomography. Biomaterials 30: 2411–2419.

    Article  CAS  PubMed  Google Scholar 

  • Sieminski A.L., Semino C.E., Gong H. & Kamm R.D. 2008. Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J. Biomed. Mater. Res. A 87: 494–504.

    Article  CAS  PubMed  Google Scholar 

  • Sierad L., Simionescu A., Albers C., Chen J., Maivelett J., Tedder M., Liao J. & Simionescu D.T. 2010. Design and testing of a pulsatile conditioning system for dynamic endothelializa-tion of polyphenol-stabilized tissue engineered heart valves. Cardiovasc. Eng. Technol. 1: 138–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith S.J., Wilson M., Ward J.H., Rahman C.V., Peet A.C., Macarthur D.C., Rose F.R., Grundy R.G. & Rahman R. 2012. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7: e52335.

  • Souza G., Molina J., Raphael R., Ozawa M., Stark D., Levin C, Bronk L.F., Ananta J.S., Mandelin J. & Georgescu M.M. 2010. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5: 291–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tancret F., Bouler J.M., Chamousset J. & Minois L.M. 2006. Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 26: 3647–3656.

    Article  CAS  Google Scholar 

  • Thein-Han W.W. & Misra R.D.K. 2009. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 5: 1182–1197.

    Article  CAS  PubMed  Google Scholar 

  • Tran R., Naseri E., Kolasnikov A., Bai X. & Yang J. 2011. A new generation of sodium chloride porogen for tissue engineering. Biotechnol. Appl. Biochem. 58: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K., Hattori K., Ishimoto Y., Yamauchi J., Habata T., Takakura Y., Ohgushi H., Fukuchi T. & Sato M. 2005. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26: 4273–4279.

    Article  CAS  PubMed  Google Scholar 

  • Vitale-Brovarone C., Baino F., Tallia F., Gervasio C. & Verné E. 2012. Bioactive glass-derived trabecular coating: a smart solution for enhancing oste-ointegration of prosthetic elements. J. Mater. Sci. Mater. Med. 23: 2369–2380.

    Article  CAS  PubMed  Google Scholar 

  • Vitale-Brovarone C., Baino F. & Verné E. 2009. High strength bioactive glass-ceramic scaffolds for bone regeneration. J. Mater. Sci. Mater. Med. 20: 643–53.

    Article  CAS  PubMed  Google Scholar 

  • Vitale-Brovarone C., Verné E., Robiglio L., Appendino P., Bassi F. & Martinasso G., Muzio G. & Canuto R. 2007. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3: 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Wang H., Mullins M., Cregg J., McCarthy C. & Gilbert R. 2010. Varying the diameter of aligned electrospun fibers alters neu-rite outgrowth and Schwann cell migration. Acta Biomater. 6: 2970–2978.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y., Kim U.J., Blasioli D.J., Kim H.J. & Kaplan D.L. 2005. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26: 7082–7094.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K., Nakamura Okano H. & Toyama Y. 2007. Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel. Restor. Neurol. Neurosci. 25: 109–117.

    CAS  PubMed  Google Scholar 

  • Wu S., Liu Y., Bharadwaj S., Atala A. & Zhang Y. 2011a. Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32: 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Wu C., Luo Y., Cuniberti G., Xiao Y. & Gelinsky M. 2011b. Three-dimensional printing of hierarchical and tough meso-porous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization. Acta Biomater. 7: 2644–2650.

    Article  CAS  PubMed  Google Scholar 

  • Wu C., Zhang Y., Zhu Y., Friis T. & Xiao Y. 2010. Structure-property relationships of silk modified mesoporous bioglass scaffolds. Biomaterials 31: 3429–3438.

    Article  CAS  PubMed  Google Scholar 

  • Yan X., Yu C., Zhou X., Tang J. & Zhao D. 2004. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43: 5980–5984.

    Article  CAS  PubMed  Google Scholar 

  • Yeong W., Sudarmadji N., Yu H., Chua C., Leong K., Venka-traman S., Boey Y. & Tan L. 2010. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6: 2028–2034.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J., Han W., Chen H., Tu M., Huan S., Miao G. Zeng R, Wu H, Cha Z. & Zhou C. 2011. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J. Mater. Sci. Mater. Med. 23: 517–525.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X., Lee L., Jackson J., Tong Y. & Wang C. 2008. Characterization of porous poly (D, L-lactic-co-glycolic acid) sponges fabricated by supercritical C02 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol. Bioeng. 100: 998–1009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tshwane University of Technology for their total support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley C. K. M. Motaung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaribe, F.N., Manoto, S.L. & Motaung, S.C.K.M. Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia 71, 353–366 (2016). https://doi.org/10.1515/biolog-2016-0056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0056

Key words

Navigation