Skip to main content
Log in

Perinatal hypoxia-ischemia decreased neuronal but increased cerebral vascular endothelial IGFBP3 expression

  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

In adults, insulin-like growth factor binding protein 3 (IGFBP3) is the main carrier protein for circulating insulin-like growth factors (IGFs) (IGF-I and-II). While most IGFBP3 is synthesized in the liver, it is also expressed locally by many cell types including vascular endothelial cells. The regulation of this endothelial IGFBP3 expression, especially in response to hypoxic-ischemic injury, has not been investigated in vivo. Using in situ hybridization histochemistry, we studied the cellular distribution of IGFBP3 mRNA in rat brains following hypoxic-ischemic injury at 1, 5, 24, and 72 h of recovery. In normal P7 rat brain, IGFBP3 mRNA was found in neurons within the thalamus, hippocampus, and amygdaloid. Low levels of IGFBP3 mRNA were also detected in cerebral vascular endothelial cells. After the hypoxic-ischemic injury, the levels of neuronal IGFBP3 mRNA substantially decreased within 24 h in areas that were normally supplied by the middle cerebral artery. In the meantime, there was an immediate increase in IGFBP3 expression in vascular endothelial cells throughout the affected hemisphere. This vascular IGFBP3 expression was further enhanced with the highest level at 24h of recovery whereas neuronal IGFBP3 expression was further decreased. By 72 h of recovery, IGFBP3 was no longer expressed in vascular endothelial cells. Taken together, the activation of IGFBP3 is a likely mechanism by which vascular endothelial cells respond to hypoxic-ischemic insult. In addition, increased endothelial IGFBP3 may modulate the interaction of IGFs with IGF-I receptors at the site of injury and/or act independently on endothelial cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, L. S., Pao, C.-I., and Villafuerte, B. C. (1998). Prog. Nuclei Acid Res. Mol. Biol. 60, 195–263.

    CAS  Google Scholar 

  2. Rechler, M. M. and Clemmons, D. R. (1998). Trends Endocrinol. Metab. 9, 176–183.

    Article  CAS  PubMed  Google Scholar 

  3. Villafuerte, B. C., Koop, B. L., Pao, C.-I., Gu, L., Birdsong, G. G., and Phillips, L. S. (1994). Endocrinology 134, 2044–2050.

    Article  PubMed  CAS  Google Scholar 

  4. Bar, R. S., Booth, B. A., Boes, M., and Dake, B. (1989). Endocrinology 125, 1910–1920.

    PubMed  CAS  Google Scholar 

  5. Chin, E., Zhou, J., Dai, J., Baxter, R. C., and Bondy, C. A. (1994). Endocrinology 134, 2498–2504.

    Article  PubMed  CAS  Google Scholar 

  6. Chin, E., Michels, K., and Bondy, C. A. (1993). J. Clin. Enolcrinol. Metab. 78, 156–164.

    Article  Google Scholar 

  7. Zhou, J. and Bondy, C. (1993). Fertil. Steril. 60, 897–904.

    PubMed  CAS  Google Scholar 

  8. Zhou, J. and Bondy, C. A. (1993). Biol. Reprod. 48, 467–482.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, J. and Dsupin, B. A., Giudice, L. C., and Bondy, C. A. (1994). J. Clin. Endocrinol. Metab. 79, 1723–1734.

    Article  PubMed  CAS  Google Scholar 

  10. Farber, H. W. and Rounds, S. (1990). Exp. Cell Res. 191, 27–36.

    Article  PubMed  CAS  Google Scholar 

  11. Graven, K. K., Zimmerman, L. H., Dickson, E. W., Weinhouse, G. L., and Farber, H. W. (1993). J. Cell Physiol. 157, 544–554.

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa, S., Shreeniwas, R., Grett, J., Clauss, M., Furie, M. and Stern, D. M. (1990). Br. J. Haematol. 75, 517–524.

    PubMed  CAS  Google Scholar 

  13. Shreeniwas, R., Ogawa, S., Cozzolina, F., Torcia, G., Braunsterin, N., Butura, C., Brett, J., Lieberman, H. B., Furie, M. B., and Joseph, S. J. (1992). J. Cell Physiol. 146, 8–17.

    Article  Google Scholar 

  14. Tuci, M. McDonald, R. J. Aaronson, R. A., Graven, K. K., and Farber, H. W. (1996). Am. J. Physiol. 271, L341-L348.

    Google Scholar 

  15. Zimmerman, L. H., Levine, R. A., and Farber, H. W. (1991). J. Clin. Invest. 87, 908–914.

    PubMed  CAS  Google Scholar 

  16. Clawson, T. F., Vannucci, S. J., Wang, G.-M., Seaman, L. B., Yang, X-L., and Lee, W.-H. (1999). Biol. Signals Recept. 8, 281–293.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, W.-H., Wang, G.-M., Seaman, L. B., and Vannucci, S. J. (1996). J. Cereb. Blood Flow Metab. 16, 227–236.

    Article  PubMed  CAS  Google Scholar 

  18. Bondy, C. A. (1991). J. Neurosci. 11, 3442–3455.

    PubMed  CAS  Google Scholar 

  19. Lee, W.-H., Clemens, J. A., and Bondy, C. A., (1992). Mol. Cell Neurosci. 3, 36–43.

    Article  CAS  Google Scholar 

  20. Lee, W.-H., Javedan, S., and Bondy, C. A. (1992). J. Neurosci. 12, 4737–4744.

    PubMed  CAS  Google Scholar 

  21. Lee, W.-H., Michels, K. M., and Bondy, C. A. (1993). Neuroscience 53, 251–265.

    Article  PubMed  CAS  Google Scholar 

  22. Bondy, C. and Lee W.-H. (1993). J. Neurosci. 13, 5092–5104.

    PubMed  CAS  Google Scholar 

  23. Gluckman, P., Klempt, N., Guan, J., Millard, C., Sirimanne, E., Dragunow, M., Klempt, M., Singh, K., Williams, C., and Nikolics, K. (1992). Biochem. Biophys. Res. Commun. 182, 593–599.

    Article  PubMed  CAS  Google Scholar 

  24. Tucci, M., Nygard, K., Tanswell, B. V., Farber, H. W., Hill, D. J., and Han, V. K. M. (1998). J. Endocrinol. 157, 13–24.

    Article  PubMed  CAS  Google Scholar 

  25. Rice, J. E. III, Vannucci, R. C., and Brierley, J. B. (1981). Ann. Neurol. 9, 131–141.

    Article  PubMed  Google Scholar 

  26. Rajah, R., Valentinis, B., and Cohen, P. (1997). J. Biol. Chem. 272, 12,181–12,188.

    Article  CAS  Google Scholar 

  27. Gucev, Z. S., Oh, Y., Kelley, K. M., and Rosenfeld, R. G. (1996). Cancer Res. 56, 1545–1550.

    PubMed  CAS  Google Scholar 

  28. Huynh, H., Yang, S. F., and Pollak, M. (1996). J. Biol. Chem. 271, 1016–1021.

    Article  PubMed  CAS  Google Scholar 

  29. Buckbinder, L., Talbott, R., Velasco-Miguel, S., Takenaka, I., Faha, B., Selzinger, B. R., and Kley, N. (1996). Nature 337, 646–649.

    Google Scholar 

  30. Graeber, T. G., Perterson, J. F., Tsai, M., Monica, K., Fornace, A. J., and Giaccia, A. J. (1994). Mol. Cell Biol. 14, 6264–6277.

    PubMed  CAS  Google Scholar 

  31. An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., and Neckers, L. M. (1998). Nature 392, 405–408.

    Article  PubMed  CAS  Google Scholar 

  32. Danis, R. P. and Bingaman, D. P. (1997). Ophthalmology 104, 1661–1669.

    PubMed  CAS  Google Scholar 

  33. Grant, M. B., Mames, R. N., Fitzgerald, C., Ellis, E. A., Caballero, S., Aboufriekha, M. and Guy, J. (1993). Diabetologia 36, 282–291.

    Article  PubMed  CAS  Google Scholar 

  34. Plate, K. H. (1999). J. Neuropathol. Exp. Neurol. 58, 313–320.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, E. P., Dickson, B. A., and Chernausek, S. D. (1990). Endocrinology 127(6):2744–2751.

    Article  PubMed  CAS  Google Scholar 

  36. Paxinos, G. and Watson, C. (1986). The rat brain in stereotaxic coordinates. Academic: San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hua Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WH., Wang, GM., Yang, XL. et al. Perinatal hypoxia-ischemia decreased neuronal but increased cerebral vascular endothelial IGFBP3 expression. Endocr 11, 181–188 (1999). https://doi.org/10.1385/ENDO:11:2:181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ENDO:11:2:181

Key Words

Navigation