Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T16:55:07.355Z Has data issue: false hasContentIssue false

Geological modelling of clay diagenesis in sandstones

Published online by Cambridge University Press:  09 July 2018

Andrew Hurst
Affiliation:
Geologisk Laboratorium, Statoil, Forus, Postboks 300, N-4001 Stavanger, Norway
Hilary Irwin
Affiliation:
17 Braiklay Avenue, Tarves, Aberdeen

Abstract

Porewater composition is the main control on diagenetic reactions in sandstones. Porewater has two possible contrasting primary sources: (i) fresh meteoric water, which is dilute and acidic, (ii) sea-water, which is alkaline and more concentrated than meteoric water. During burial, unstable minerals equilibrate with these porewaters, thus increasing the concentrations of dissolved species. A simple manometer model is used to describe the diagenesis of interconnected (fluvial or deltaic) sandstones. This model illustrates the following geological relationships: (a) a hydraulic head causes meteoric waters to penetrate deep into sedimentary basins, typically generating authigenic kaolinite; (b) decrease of the hydraulic head (by lowering the land level or by raising sea level) causes concentrated brines to rise within the basin, typically forming illitic cements; (c) enclosed sandstones (marine facies) are isolated from meteoric water flux and only receive fluxes when fault-induced or when uplifted. Kaolinite morphology and distribution are identified as being flux- or diffusion-controlled.

Resume

Resume

La composition de l'eau des pores exerce le contrôle majeur sur les réactions diagénétiques des grès. L'origine de cette eau est double (i) de l'eau fraîche météorique, diluée et acide (ii) de l'eau de mer, alcaline et plus concentrée que l'eau méteorique. Pendant l'enfouissement, les minéraux instables s'équilibrent avec ces eaux des pores augmentant ainsi les concentrations des espèces en solution. Un modèle à base d'un simple manomètre est utilisé pour représenter la diagénèse des grès (fluviaux ou maritimes) interconnectés. Ce modèle met en evidence les relations géologiques suivantes: (a) un niveau hydraulique entraîne la pénétration des eaux météoriques loin dans les bassins sédimentaires générant des kaolinites authigènes, (b) la diminution du niveau hydraulique (par diminution du plan terrestre ou augmentation du plan marin) provoque l'élévation des saumures dans le bassin formant des ciments à base d'illites, (c) des grès enfermés (facies marin) sont isolés du flux d'eau météorique et reçoivent uniquement ces flux s'ils présentent des défauts ou s'ils sone surélevés. On démontre que la morphologie et la distribution des kaolinites sont contrôlées par le flux ou la diffusion.

Kurzreferat

Kurzreferat

Eine Schlüsselfunktion über diagenetische Reaktionsabläufe in Sandsteinin stellt die Zusammansetzung von Porenwasser dar. Dieses hat zwei mögliche, gegensätzliche Primärquellen: (i) Oberflächensüßwasser, welches elektrolytarm und sauer ist (ii) Meerwasser, welches alkalisch und elektrolytreicher als Oberflächenwasser ist. Während der Absenkung streben instabile Minerale mit den Porenwässern ein Gleichgewicht an, sodaß die Konzentration gelöster Arten ansteigt. Für den modellhaften Diageneseablauf miteinander verbundener Sandsteinne (fluviatiles- oder Deltasediment), wird ein einfaches Manometermodell verwendet. Dieses veranschaulicht die folgenden geologischen Zusammenhänge (a) ein Wasserüberdruck veranlasst das Oberflächenwasser tief in die Sedimentbacken vorzudringen, wobei kennzeichnenderweise authigene Kaolinite entstehen (b) eine Verringerung des Wasserüberdrucks (durch Absinken der Landoberfläche oder Anstieg des Meeresspiegels) veranlasst konzentrierte Salzlösungen innerhalb des Beckens aufzusteigen und typische illitische Verkittungen auszubilden (c) eingeschlossene Sandsteine (marine Facies) sind von der Strömung des Oberflächenwassers isoliert und werden von dieser nur dann erreicht, wenn Verwerfungen entstanden sind oder Hebungen auftreten. Die Morphologie und Verteilung von Kaoliniten wird als strömungs- oder diffusionskontrollierter Vorgang bestimmt.

Resumen

Resumen

La composición de las soluciones intersticiales es el control principal de las reacciones diagenéticas en areniscas. Las soluciones intersticiales tienen dos posibles origenes: (1) aguas meteóricas diluidas y ácidas (2) agua del mar, alcalina y mas concentrada que la meteórica. Durante el enterramiento los minerales inestables se equilibran con las soluciones intersticiales incrementandose la concentracion de especies disueltas. Un modelo sencillo manométrico se ha usado para representar la diagénesis de areniscas (fluviales o deltaicas) interconectadas. Este modelo ilustra las siguientes relaciones geológicas: (a) una presión hidraulica fuerza a las aguas meteóricas a penetrar profundamente en las cuencas sedimentarias, formando caolinita autigénica (b) el descenso de la presión hidrostatica (por disminucion del nivel terrestre o por elevación del nivel del mar) provoca un ascenso de salmueras concentradas en la cuenca, formando un cemento rico en ilita (c) las areniscas confinadas (facies marina) son aisladas del flujo de aguas meteóricas y solo reciben soluciones cuando se producen fallas o emersiones. La morfología y distribución de la caolinita estan controladas por los procesos de flujo o difusión.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.L. (1978) Studies in fluviatile sedimentation: An explanatory quantitative model for the architecture of avulsion-controlled alluvial suites. Sed. Geol. 21, 129147.Google Scholar
Almon, W.R. & Davies, D.K. (1979) Regional diagenetic trends in the lower Cretaceous Muddy Sandstone, Powder River Basin. Pp. 379400 in: Aspects of Dlagenesis (Scholle, P. A. & Schluger, P. R., editors). S.E.P.M. Spec. Publ. 26.Google Scholar
Bailey, S.W., Brindley, G.W., Johns, W.D., Martin, R.T. & Ross, M. (1971) Report of the Clay Minerals Society Nomenclature Committee. Clays Clay Miner. 19, 132134.CrossRefGoogle Scholar
Beach, A. (1979) Pressure solution as a metamorphic process in deformed terrigenous sedimentary rocks. Lithos 12, 5158 CrossRefGoogle Scholar
Berner, R.A. (1978) Rate control of mineral dissolution under earth surface conditions. Am. J. Sci. 278, 12351252.Google Scholar
Bjorlvkke, K., Elverhoi, A. & Malm, O. (1979) Diagenesis in Mesozoic sandstones from Spitzbergen and the North Sea-—a comparison. Geol Rundschau 68, 11521171.Google Scholar
Blanche, J.B. & Whitaker, J.H.McD. (1978) Diagenesis of part of the Brent Sand Formation (Middle Jurassic) of the northern North Sea Basin. J. geol. Soc. London 135, 7382.Google Scholar
Boles, J.R. (1978) Active ankerite cementation in the subsurface Eocene of Southwest Texas. Contrib. Mineral. Petrol. 68, 1322.CrossRefGoogle Scholar
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of south-west Texas: implications of smectite diagenesis on sandstone cementation. J. sedim. Petrol. 49, 5570.Google Scholar
Bucke, D.P. & Mankin, C.J. (1971) Clay-mineral diagenesis within interlaminated shales and sandstones. J. sedim. Petrol. 41, 971981.Google Scholar
Davies, D.K., Almon, W.R., Bonis, S.B. & Hunter, B.E. (1979) Deposition and diagenesis of Tertiary-Holocene volcaniclastics, Guatemala. Pp. 281306 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., editors). S.E.P.M. Spec. Publ. 26.CrossRefGoogle Scholar
Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone composition. Bull. Am. Assoc. Petrol. Geol. 63, 21642182.Google Scholar
Dutton, S.P. (1977) Diagenesis and porosity distribution in deltaic sandstone, Strawn Series (laennsylvanian), North-central Texas. Trans. Gulf Coast Assoc. Geol. Soc. 27, 272277.Google Scholar
Fanning, D.S. & Keramidas, V.Z. (1977) Micas. Pp 195292 in: Minerals in Soil Environments (Dixon, J. B. & Weed, S. B., editors). Soil Sci. Soc. America, Madison, Wisconsin, U.S.A. Google Scholar
Foscolos, A.E. & Powell, T.G. (1979) Catagenesis in shales and occurrence of authigenic clays in sandstones, North Sabine H-49 well, Canadian Arctic Islands. Can. J. Earth Sci. 16, 13091314.Google Scholar
Fuchtbauer, H. (1979) Sandstone diagenesis in the light of new literature. Geol. Rundschau 68, 11251151.Google Scholar
Guven, N., Hower, W.F. & Davies, D.K. (1980) Nature of authigenic illites in sandstone reservoir. J. sedim. Petrol. 50, 761766.Google Scholar
Hancock, N.J. & Taylor, A.M. (1978) Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation. J. geol. Soc. Lond. 135, 6971.Google Scholar
Harder, H. (1977) Clay mineral formation under lateritic weathering conditions. ClayMiner. 12, 281288.Google Scholar
Hawkins, P.J. (1978) Relationship between diagenesis, porosity reduction, and oil emplacement in late Carboniferous sandstone reservoirs, Bothsamsall, Oilfield, E. Midlands. J. geol. Soc. Lond. 135, 95100.Google Scholar
Hayes, J.B. (1970) Polytypism of chlorite in sedimentary rocks. Clays Clay Miner. 18, 285306.CrossRefGoogle Scholar
Hitchon, B. & Friedman, I. (1969) Geochemistry and origin of formation waters in the western Canada sedimentary basin—-I. Stable isotopes of hydrogen and oxygen. Geochim. cosmochim. Acta. 33, 13211349.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust-faulted disturbed belt of Montana, U.S.A. Pp. 5580 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, la. R., editors). S.E.P.M. Spec. Publ. 26, 5580.Google Scholar
Holland, H.D. (1978) The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, John Wiley & Sons, New York.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Bull. Geol. Soc. Am. 87, 725737.Google Scholar
Hurd, D.C. (1973) Interactions of biogenic opal, sediment and sea-water in the central equatorial Pacific. Geochim. cosmochim. Acta 37, 22572282.Google Scholar
Hurst, A.R. (1980a) The diagenesis of Jurassic rocks of the Moray Firth, NE Scotland. PhD. thesis, Univ. Reading.Google Scholar
Hurst, A.R. (1980b) Occurrence of corroded authigenic kaolinite in a diagenetically modified sandstone. Clays ClayMiner. 28, 393396.Google Scholar
Hutcheon, I., Oldershaw, A. & Ghent, E.D. (1980) Diagenesis of Cretaceous sandstones of the Kootenary Formation at Elk Valley (south-eastern British Columbia) and Mt. Allan (south-western Alberta). Geochim. cosmochim. Acta 44, 1425-1435.Google Scholar
Irwin, H. (1980) Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge Clay of Dorset, England. Sedimentology 27, 577592.Google Scholar
Irwin, H., Curtis, C.D. & Coleman, M. (1977) Isotopic evidence of source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209213.Google Scholar
Lahann, R.W. (1980) Smectite diagenesis and sandstone cements: the effect of reaction temperature. J. sedim. Petrol. 50, 755760.Google Scholar
Land, L.S. & Dutton, S.P. (1978) Cementation of a Pennsylvanian deltaic sandstone: isotopic data. J. sedim. Petrol. 48, 11671176.Google Scholar
Lerman, A. (1979) Geochemical Processes in Water and Sediment Environments. Wiley-Interscience, John Wiley & Sons, New York.Google Scholar
Lewin, J.C. (1971) The dissolution of silica from diatom walls. Geochim. cosmochim. Acta. 21, 182198.Google Scholar
Mackenzie, F. & Gees, R. (1971) Quartz: synthesis at earth-surface conditions. Science 173, 533534.Google Scholar
McHardy, W.J., Wilson, M.J. & Tait, J.M. (1982) Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field. Clay Miner. 17, 2339.Google Scholar
Morgan, J.J. (1967) Applications and limitations of chemical thermodynamics in natural water systems. In: Equilibrium Concepts in Natural Water Systems, Adv. Chem. Set. 67, Am. Chem. Sot., Washington D.C., U.S.A. Google Scholar
Morris, R.C., Proctor, K.E. & Koch, M.R. (1979) Petrology and diagenesis of deep-water sandstones. Ouachita Mountains, Arkansas and Oklahoma. Pp. 263279 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., editors). S.E.P.M. Spec. Publ. 26.Google Scholar
Nancollas, G.N. & Purdie, N. (1964) The kinetics of crystal growth. Quart. Rev (London) 18, 120.Google Scholar
Perry, E. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner. 18, 165177.Google Scholar
ReynoldS, R.C. & Hower, J. (1970) The nature of interlaying in mixed-layer illite/montmorillonites. Clays Clay Miner. 18, 2536.Google Scholar
Robin, P-Y.F. (1978) Pressure solution at grain-to-grain contacts. Geochim. cosmochim. Aeta 42, 13831398.Google Scholar
Robin, P-Y.F. (1979) Theory of metamorphic segregation and related processes. Geochim. cosmochim. Acta 43, 15871600.Google Scholar
Rohrlich, V., Price, N.B. & Calvert, S.E. (1969) Chamosite in recent sediments of Loch Etive, Scotland. J. sedim. Petrol 39, 624631.Google Scholar
Sayles, F.L. & Manheim, F.T. (1975) Interstitial solutions and diagenesis in deeply buried marine sediments: results from the Deep Sea Drilling Project. Geochim. cosmochim. Acta 39, 103127.Google Scholar
Schmidt, V. & McDonald, D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis. Pp. 175208 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., editors). S.E.P.M. Spec. Publ. 26, 175208.Google Scholar
Siever, R. (1979) Plate-tectonic controls on diagenesis. J. Geol. 87, 127155.Google Scholar
Stanton, G.D. (1977) Secondary porosity in sandstones of Lower Wilcox (Eocene), Karnes County, Texas. Bull. Am. Ass. Pet. Geol. 61, 15471548.Google Scholar
Sunagawa, I. (1977) Natural crystallisation. J. Cryst. Growth 42, 214223 Google Scholar
Tillman, R.W. & Almon, W.R. (1979) Diagenesis of Frontier Formation offshore bar sandstones, Spearhead Ranch Field, Wyoming. Pp. 337378 in: Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., editors). S.E.P.M. Spec. Publ. 26.Google Scholar
Thomas, J.B. (1978) Diagenetic sequences in low-permeability argillaceous sandstones. J. geol. Soc. Lond. 135, 93100.Google Scholar
Usdowski, E., Hoefs, I. & Mehschel, G. (1979) Relationship between x3C and 180 fractionation and changes in major dement composition in a recent calcite-depositing spring-—a model of chemical variations with inorganic CaCO3 precipitation. Earth Plan. Sci. Letters 42, 267276.Google Scholar
Velde, B. (1977) Clays and Clay Minerals in Natural and Synthetic Systems. Elsevier, Amsterdam.Google Scholar
Von Engelhardt, W. (1967) Interstitial solutions and diagenesis in sediments. In: Diagenesis in Sediments (Larsen, G. & Chillinger, G. V., editors). Elsevier, Amsterdam.Google Scholar
Walker, T.R., Waugh, B. & Crone, A.J. (1978) Diagenesis in first-cycle desert alluvium of Cenozoic age, southwestern United States and northwestern Mexico, Bull. Geol. Soc. Amer. 89, 1932.Google Scholar
Wardlaw, N.C. & Cassan, S.P. (1979) Estimation of recovery efficiency by visual observation of pore systems in reservoir rocks. Bull. Canad. Petroleum Geol. 26, 572585.Google Scholar
Wilson, M.D. & Pittman, E.D. (1977) Authigenic clays in sandstones: recognition and influence on reservoir properties and palaeoenvironmental analysis. J. sedim. Petrol. 47, 331.Google Scholar