Skip to main content
Log in

Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ovarian endometrioma (OMA) and deep infiltrating endometriosis (DIE) have long been recognized to have different histology and, as such, postulated to be 2 separate disease entities. Few studies, however, have attempted to elucidate the causes for their differences. Making use of ectopic endometrial tissue samples from 25 and 20 women with OMA and DIE, respectively, and control endometrial tissue samples from 25 women without endometriosis, we conducted an immunohistochemical analysis to evaluate the expression of a group of carefully chosen markers for epithelial-mesenchymal transition (EMT), fibroblast-to-myofibroblast transdifferentiation (FMT), smooth muscle metaplasia (SMM), fibrosis, vascularity, hormonal receptors, and proteins involved in epigenetic modifications. We found that both OMA and DIE lesions exhibited the same cellular changes consistent with EMT, FMT, SMM, and fibrosis as already shown in animal models. Compared to OMA, DIE lesions underwent more thorough and extensive EMT, FMT, and SMM and, consequently, displayed significantly higher fibrotic content but less vascularity. The 2 conditions also showed different expression levels of hormonal receptors. Both OMA and DIE lesions, especially the latter, showed significantly higher staining of enhancer of zeste homolog 2, H3K9me3, and H3K27me3 than that of control endome-trium, suggesting progressive epigenetic changes concomitant with cellular ones. Finally, proteins that are known to be involved in fibrogenesis, such as thymocyte differentiation antigen 1 and peroxisome proliferator-activated receptor g, were also aberrantly expressed under both conditions. The many similarities shared by both OMA and DIE indicate that the 2 conditions may actually share the same pathogenesis/pathophysiology. Their differences, however, suggest that the source of these differences may result from the different lesional microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  2. Von Rokitansky C. Ueber uterusdrusen-neubildung in uterus and ovarilsarcomen. Z Gesellschaft Aerzte Wein. 1860;186:445–473.

    Google Scholar 

  3. Redwine DB. Age-related evolution in color appearance of endo-metriosis. Fertil Steril. 1987;48(6):1062–1063.

    Article  CAS  PubMed  Google Scholar 

  4. Nisolle M, Casanas-Roux F, Anaf V, Mine JM, Donnez J. Mor-phometric study of the stromal vascularization in peritoneal endo-metriosis. Fertil Steril. 1993;59(3):681–684.

    Article  CAS  PubMed  Google Scholar 

  5. Brosens IA. Is mild endometriosis a progressive disease? Hum Reprod. 1994;9(12):2209–2211.

    Article  CAS  PubMed  Google Scholar 

  6. Harirchian P, Gashaw I, Lipskind ST, et al. Lesion kinetics in a non-human primate model of endometriosis. Hum Reprod. 2012;27(8):2341–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jenkins S, Olive DL, Haney AF. Endometriosis: pathogenetic implications of the anatomic distribution. Obstet Gynecol. 1986;67(3):335–338.

    CAS  PubMed  Google Scholar 

  8. Gylfason JT, Kristjansson KA, Sverrisdottir G, Jonsdottir K, Rafnsson V, Geirsson RT. Pelvic endometriosis diagnosed in an entire nation over 20 years. Am J Epidemiol. 2010;172(3):237–243.

    Article  PubMed  Google Scholar 

  9. Koninckx PR, Martin DC. Deep endometriosis: a consequence of infiltration or retraction or possibly adenomyosis externa?. Fertil Steril. 1992;58(5):924–928.

    Article  CAS  PubMed  Google Scholar 

  10. Koninckx PR, Ussia A, Adamyan L, Wattiez A, Donnez J. Deep endometriosis: definition, diagnosis, and treatment. Fertil Steril. 2012;98(3):564–571.

    Article  PubMed  Google Scholar 

  11. Anaf V, Simon P, Fayt I, Noel J. Smooth muscles are frequent components of endometriotic lesions. Hum Reprod. 2000;15(4):767–771.

    Article  CAS  PubMed  Google Scholar 

  12. Koninckx PR. Biases in the endometriosis literature. Illustrated by 20 years of endometriosis research in Leuven. Eur J Obstet Gynecol Reprod Biol. 1998;81(2):259–271.

    Article  CAS  PubMed  Google Scholar 

  13. Tosti C, Pinzauti S, Santulli P, Chapron C, Petraglia F. Pathoge-netic mechanisms of deep infiltrating endometriosis. Reprod Sci. 2015;22(9):1053–1059

    Article  CAS  PubMed  Google Scholar 

  14. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endome-triosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–596.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Kajdacsy-Balla A, Strawn E, et al. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology. 2006;147(1):232–246.

    Article  CAS  PubMed  Google Scholar 

  16. Garry R. Is insulin resistance an essential component of PCOS?: the endometriosis syndromes: a clinical classification in the presence of aetiological confusion and therapeutic anarchy. Hum Reprod. 2004;19(4):760–768.

    Article  CAS  PubMed  Google Scholar 

  17. Brosens IA. Endometriosis—a disease because it is characterized by bleeding. Am J Obstet Gynecol. 1997;176(2):263–267.

    Article  CAS  PubMed  Google Scholar 

  18. Guo SW, Ding D, Shen M, Liu X. Dating endometriotic ovarian cysts based on the content of cyst fluid and its potential clinical implications. Reprod Sci. 2015;22(7):873–883.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Q, Duan J, Olson M, Fazleabas A, Guo SW. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16.

    Article  PubMed  CAS  Google Scholar 

  21. Itoga T, Matsumoto T, Takeuchi H, et al. Fibrosis and smooth muscle metaplasia in rectovaginal endometriosis. Pathol Int. 2003;53(6):371–375.

    Article  PubMed  Google Scholar 

  22. Khare VK, Martin DC, Eltorky M. A comparative study of ovarian and pelvic wall-infiltrating endometriosis. J Am Assoc Gyne-col Laparosc. 1996;3(2):235–239.

    Article  CAS  Google Scholar 

  23. Matsuzaki S, Darcha C. Involvement of the Wnt/beta-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013;8(10):e76808.

    Google Scholar 

  24. Mechsner S, Bartley J, Loddenkemper C, Salomon DS, Starzinski-Powitz A, Ebert AD. Oxytocin receptor expression in smooth muscle cells of peritoneal endometriotic lesions and ovarian endo-metriotic cysts. Fertil Steril. 2005;83(suppl 1):1220–1231.

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Shen S, Qi Q, Zhang H, Guo SW. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum Reprod. 2016;31(4):734–749.

    Article  CAS  PubMed  Google Scholar 

  26. Shen M, Liu X, Zhang H, Guo SW. Transforming growth factor β1 signaling coincides with mediated epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in drive the development of adenomyosis in mice. Hum Reprod. 2016. In press.

    Google Scholar 

  27. Zhang Q, Liu X, Guo SW. Progressive development of endome-triosis and its hindrance by anti-platelet treatment in mice with induced endometriosis. Reprod Biomed Online. 2017;34(2):124–136.

    Article  CAS  PubMed  Google Scholar 

  28. Kamergorodsky G, Ribeiro PA, Galvao MA, et al. Histologic classification of specimens from women affected by superficial endometriosis, deeply infiltrating endometriosis, and ovarian endometriomas. Fertil Steril. 2009;92(6):2074–2077.

    Article  PubMed  Google Scholar 

  29. Schweppe KW, Dmowski WP, Wynn RM. Ultrastructural changes in endometriotic tissue during danazol treatment. Fertil Steril. 1981;36(1):20–26.

    Article  CAS  PubMed  Google Scholar 

  30. Schweppe KW, Wynn RM. Endocrine dependency of endome-triosis: an ultrastructural study. Eur J Obstet Gynecol Reprod Biol. 1984;17(2-3):193–208.

    Article  CAS  PubMed  Google Scholar 

  31. Abrao MS, Neme RM, Carvalho FM, Aldrighi JM, Pinotti JA. Histological classification of endometriosis as a predictor of response to treatment. Int J Gynaecol Obstet. 2003;82(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q, Dong P, Liu X, Sakuragi N, Guo SW. Enhancer of Zeste homolog 2 (EZH2) induces epithelial-mesenchymal transition in endometriosis. Sci Rep, in press.

  33. Bulun SE, Monsavais D, Pavone ME, et al. Role of estrogen receptor-beta in endometriosis. Semin Reprod Med. 2012;30(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Noyes RW, Haman JO. Accuracy of endometrial dating; correlation of endometrial dating with basal body temperature and menses. Fertil Steril. 1953;4(6):504–517.

    Article  CAS  PubMed  Google Scholar 

  35. Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol. 2005;167(2):365–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mann J, Chu DC, Maxwell A, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–714, 14 e1-e4.

    Article  CAS  PubMed  Google Scholar 

  37. Long Q, Liu X, Qi Q, Guo SW. Chronic stress accelerates the development of endometriosis in mouse through adrenergic receptor beta2. Hum Reprod. 2016;31(11):2506–2519.

    Article  CAS  PubMed  Google Scholar 

  38. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–832.

    Article  CAS  PubMed  Google Scholar 

  39. Koumas L, King AE, Critchley HO, Kelly RW, Phipps RP. Fibroblast heterogeneity: existence of functionally distinct Thy 1(+) and Thy 1(—) human female reproductive tract fibroblasts. Am J Pathol. 2001;159(3):925–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peeters LL, Vigne JL, Tee MK, Zhao D, Waite LL, Taylor RN. PPAR gamma represses VEGF expression in human endometrial cells: implications for uterine angiogenesis. Angiogenesis. 2005;8(4):373–379.

    Article  CAS  PubMed  Google Scholar 

  41. Hasegawa T, Hasegawa F, Hirose T, Sano T, Matsuno Y. Expression of smooth muscle markers in so called malignant fibrous histiocytomas. J Clin Pathol. 2003;(56):666–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12(9):2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB J. 2006;20(8):1045–1054.

    Article  CAS  PubMed  Google Scholar 

  44. Bulun SE, Cheng YH, Pavone ME. Estrogen receptor-beta, estrogen receptor-alpha, and progesterone resistance in endometriosis. Semin Reprod Med. 2010;28(1):36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hornung D, Waite LL, Ricke EA, Bentzien F, Wallwiener D, Taylor RN. Nuclear peroxisome proliferator-activated receptors alpha and gamma have opposing effects on monocyte chemotaxis in endometriosis. J Clin Endocrinol Metab. 2001;86(7):3108–3114.

    CAS  PubMed  Google Scholar 

  46. McKinnon B, Bersinger NA, Huber AW, Kuhn A, Mueller MD. PPAR-gamma expression in peritoneal endometriotic lesions correlates with pain experienced by patients. Fertil Steril. 2010;93(1):293–296.

    Article  CAS  PubMed  Google Scholar 

  47. Xue Q, Lin Z, Cheng YH, et al. Promoter methylation regulates estrogen receptor 2 in human endometrium and endometriosis. Biol Reprod. 2007;77(4):681–687.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Q, Ding D, Liu X, Guo SW. Activated platelets induce estrogen receptor beta expression in endometriotic stromal cells. Gynecol Obstet Invest. 2015;80(3):187–192.

    Article  CAS  PubMed  Google Scholar 

  49. Signorile PG, Campioni M, Vincenzi B, D’Avino A, Baldi A. Rectovaginal septum endometriosis: an immunohistochemical analysis of 62 cases. In Vivo. 2009;23(3):459–464.

    PubMed  Google Scholar 

  50. Meyer JL, Zimbardi D, Podgaec S, Amorim RL, Abrao MS, Rainho CA. DNA methylation patterns of steroid receptor genes ESR1, ESR2, and PGR in deep endometriosis compromising the rectum. Int J Mol Med. 2014;33(4):897–904.

    Article  CAS  PubMed  Google Scholar 

  51. Vinci G, Arkwright S, Audebourg A, et al. Correlation between the clinical parameters and tissue phenotype in patients affected by deep-infiltrating endometriosis. Reprod Sci. 2016;23(9):1258–1268.

    Article  CAS  PubMed  Google Scholar 

  52. Noel JC, Chapron C, Bucella D, et al. Estrogen and progesterone receptors in smooth muscle component of deep infiltrating endometriosis. Fertil Steril 2010;93(6):1774–1777.

    Article  CAS  PubMed  Google Scholar 

  53. Barcena de Arellano ML, Gericke J, Reichelt U, et al. Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions. Hum Reprod. 2011;26(10):2721–2730.

    Article  CAS  Google Scholar 

  54. Boyle DP, McCluggage WG. Peritoneal stromal endometriosis: a detailed morphological analysis of a large series of cases of a common and under-recognised form of endometriosis. J Clin Pathol. 2009;62(6):530–533.

    Article  CAS  PubMed  Google Scholar 

  55. Clement PB. The pathology of endometriosis: a survey of the many faces of a common disease emphasizing diagnostic pitfalls and unusual and newly appreciated aspects. Adv Anat Pathol. 2007;14(4):241–260.

    Article  PubMed  Google Scholar 

  56. Mai KT, Yazdi HM, Perkins DG, Parks W. Pathogenetic role of the stromal cells in endometriosis and adenomyosis. Histo-pathology. 1997;30(5):430–442.

    CAS  Google Scholar 

  57. Doss BJ, Wanek SM, Jacques SM, Qureshi F, Ramirez NC, Lawrence WD. Ovarian smooth muscle metaplasia: an uncommon and possibly underrecognized entity. Int J Gynecol Pathol. 1999;18(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  58. Fukunaga M. Smooth muscle metaplasia in ovarian endometrio-sis. Histopathology. 2000;36(4):348–352.

    Article  CAS  PubMed  Google Scholar 

  59. Bonte H, Chapron C, Vieira M, et al. Histologic appearance of endometriosis infiltrating uterosacral ligaments in women with painful symptoms. J Am Assoc Gynecol Laparosc. 2002;9(4):519–524.

    Article  PubMed  Google Scholar 

  60. van Kaam KJ, Schouten JP, Nap AW, Dunselman GA, Groothuis PG. Fibromuscular differentiation in deeply infiltrating endome-triosis is a reaction of resident fibroblasts to the presence of ecto-pic endometrium. Hum Reprod. 2008;23(12):2692–2700.

    Article  CAS  PubMed  Google Scholar 

  61. Leyendecker G, Herbertz M, Kunz G, Mall G. Endometriosis results from the dislocation of basal endometrium. Hum Reprod. 2002;17(10):2725–2736.

    Article  CAS  PubMed  Google Scholar 

  62. Cornillie FJ, Oosterlynck D, Lauweryns JM, Koninckx PR. Deeply infiltrating pelvic endometriosis: histology and clinical significance. Fertil Steril. 1990;53(6):978–983.

    Article  CAS  PubMed  Google Scholar 

  63. Stovall DW, Anners JA, Halme J. Immunohistochemical detection of type I, III, and IV collagen in endometriosis implants. Fertil Steril. 1992;57(5):984–989.

    Article  CAS  PubMed  Google Scholar 

  64. Matsuzaki S, Canis M, Darcha C, Dechelotte P, Pouly JL, Bruhat MA. Fibrogenesis in peritoneal endometriosis. A semiquantitative analysis of type-I collagen. Gynecol Obstet Invest. 1999;47(3):197–199.

    Article  CAS  PubMed  Google Scholar 

  65. Qiu JJ, Liu MH, Zhang ZX, Chen LP, Yang QC, Liu HB. Transvaginal color Doppler sonography predicts ovarian interstitial fibrosis and microvascular injury in women with ovarian endo-metriotic cysts. Acta Obstet Gynecol Scand. 2012;91(5):605–612.

    Article  PubMed  Google Scholar 

  66. Fernandez-Shaw S, Shorter SC, Naish CE, Barlow DH, Starkey PM. Isolation and purification of human endometrial stromal and glandular cells using immunomagnetic microspheres. Hum Reprod. 1992;7(2):156–161.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou Y, Hagood JS, Murphy-Ullrich JE. Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-beta in response to fibrogenic stimuli. Am J Pathol. 2004;165(2):659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Varisco BM, Ambalavanan N, Whitsett JA, Hagood JS. Thy-1 signals through PPARgamma to promote lipofibroblast differentiation in the developing lung. Am J Respir Cell Mol Biol. 2012;46(6):765–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanders YY, Kumbla P, Hagood JS. Enhanced myofibroblastic differentiation and survival in Thy-1(—) lung fibroblasts. Am J Respir Cell Mol Biol. 2007;36(2):226–235.

    Article  CAS  PubMed  Google Scholar 

  70. Sanders YY, Tollefsbol TO, Varisco BM, Hagood JS. Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol. 2011;45(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  71. Neveu WA, Mills ST, Staitieh BS, Sueblinvong V. TGF-beta1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am J Physiol Cell Physiol. 2015;309(9):C616-C626.

    Google Scholar 

  72. Overton CE, Fernandez-Shaw S, Hicks B, Barlow DH, Starkey P. In vitro culture of endometrial stromal and gland cells as a model for endometriosis: the effect of peritoneal fluid on proliferation. Fertil Steril. 1997;67(1):51–56.

    Article  CAS  PubMed  Google Scholar 

  73. Li T, He H, Liu R, Wang SX, Pu DM. Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2014;178:89–94.

    Article  CAS  PubMed  Google Scholar 

  74. Hornung D, Klingel K, Dohrn K, Kandolf R, Wallwiener D, Taylor RN. Regulated on activation, normal T-cell-expressed and -secreted mRNA expression in normal endometrium and endome-triotic implants: assessment of autocrine/paracrine regulation by in situ hybridization. Am J Pathol. 2001;158(6):1949–1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lebovic DI, Kavoussi SK, Lee J, Banu SK, Arosh JA. PPAR-gamma activation inhibits growth and survival of human endo-metriotic cells by suppressing estrogen biosynthesis and PGE2 signaling. Endocrinology. 2013;154(12):4803–4813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kon K, Ikejima K, Hirose M, et al. Pioglitazone prevents early-phase hepatic fibrogenesis caused by carbon tetrachloride. Biochem Biophys Res Commun. 2002;291(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  77. Dantas AT, Pereira MC, de Melo Rego MJ, et al. The role of PPAR Gamma in systemic sclerosis. PPAR Res. 2015;2015:124624.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.

    Article  CAS  PubMed  Google Scholar 

  80. Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. Exp Rev Obstet Gynecol. 2014;7:451–466.

    Article  CAS  Google Scholar 

  81. Yan D, Liu X, Guo SW. Endometriosis-derived thromboxane A2 induces neurite outgrowth. Reprod Sci. 2017;24(6):829–835.

    Article  CAS  PubMed  Google Scholar 

  82. Guo SW, Yan D, Liu X. Sensory nerve-derived substance P (SP) and calcitonin gene-related peptide (CGRP) promote fibrogenesis in endometriosis. In: The 13th World Congress on Endometriosis. Vancouver, British Columbia; 2017.

    Google Scholar 

  83. Donnez O, Soares M, Defrere S, et al. Nerve fiber density in deep nodular endometriotic lesions induced in a baboon experimental model. Fertil Steril. 2013;100(4):1144–1150.

    Article  CAS  PubMed  Google Scholar 

  84. Anaf V, El Nakadi I, De Moor V, Chapron C, Pistofidis G, Noel JC. Increased nerve density in deep infiltrating endometriotic nodules. Gynecol Obstet Invest 2011;71(2):112–117.

    Article  CAS  PubMed  Google Scholar 

  85. Brosens I, Gordts S, Benagiano G. Endometriosis in adolescents is a hidden, progressive and severe disease that deserves attention, not just compassion. Hum Reprod. 2013;28(8):2026–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Redwine DB. Ovarian endometriosis: a marker for more extensive pelvic and intestinal disease. Fertil Steril. 1999;72(2):310–315.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xishi Liu MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Q. & Guo, SW. Histological and Immunohistochemical Characterization of the Similarity and Difference Between Ovarian Endometriomas and Deep Infiltrating Endometriosis. Reprod. Sci. 25, 329–340 (2018). https://doi.org/10.1177/1933719117718275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117718275

Keywords

Navigation