Skip to main content

Advertisement

Log in

MicroRNAs miR-30b, miR-30d, and miR-494 Regulate Human Endometrial Receptivity

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) act as important epigenetic posttranscriptional regulators of gene expression. We aimed to gain more understanding of the complex gene expression regulation of endometrial receptivity by analyzing miRNA signatures of fertile human endometria. We set up to analyze miRNA signatures of receptive (LH + 7, n = 4) versus prereceptive (LH + 2, n = 5) endometrium from healthy fertile women. We found hsa-miR-30b and hsa-miR-30d to be significantly upregulated, and hsa-miR-494 and hsa-miR-923 to be downregulated in receptive endometrium. Three algorithms (miRanda, PicTar, and TargetScan) were used for target gene prediction. Functional analyses of the targets using Ingenuity Pathways Analysis and The Database for Annotation, Visualization and Integrated Discovery indicated roles in transcription, cell proliferation and apoptosis, and significant involvement in several relevant pathways, such as axon guidance, Wnt/β-catenin, ERK/MAPK, transforming growth factor β (TGF-β), p53 and leukocyte extravasation. Comparison of predicted miRNA target genes and our previous messenger RNA microarray data resulted in a list of 12 genes, including CAST, CFTR, FGFR2, and LIF that could serve as a panel of genes important for endometrial receptivity. In conclusion, we suggest that a subset of miRNAs and their target genes may play important roles in endometrial receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harper MJ. The implantation window. Baillieres Clin Obstet Gynaecol. 1992;6(2):351–371.

    Article  CAS  PubMed  Google Scholar 

  2. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–1512.

    Article  PubMed  Google Scholar 

  3. Edwards RG. Clinical approaches to increasing uterine receptivity during human implantation. Hum Reprod. 1995;10(suppl 2):60–66.

    Article  PubMed  Google Scholar 

  4. Macklon NS, Stouffer RL, Giudice LC, Fauser BC. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27(2):170–207.

    Article  PubMed  Google Scholar 

  5. Sha AG, Liu JL, Jiang XM, et al. Genome-wide identification of micro-ribonucleic acids associated with human endometrial receptivity in natural and stimulated cycles by deep sequencing. Fertil Steril. 2011;96(1):150–155 e155.

    Article  CAS  PubMed  Google Scholar 

  6. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod. 2010;16(5):297–310.

    Article  CAS  PubMed  Google Scholar 

  7. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004; 429(6990):457–463.

    Article  CAS  PubMed  Google Scholar 

  8. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–531.

    Article  CAS  PubMed  Google Scholar 

  9. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Creighton CJ, Benham AL, Zhu H, et al. Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One. 2010;5(3):e9637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006;125(6):1111–1124.

    Article  CAS  PubMed  Google Scholar 

  12. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–773.

    Article  CAS  PubMed  Google Scholar 

  14. Griffiths-Jones S. miRBase: microRNA sequences and annotation. Curr Protoc Bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, USA 2010;Chapter 12:Unit 12.9.1–10.

  15. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–1217.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lam EW, Shah K, Brosens JJ. The role of microRNAs and FOXO transcription factors in cycling endometrium and cancer. J Endocrinol. 2012;212(1):13–25.

    Article  CAS  PubMed  Google Scholar 

  18. Hu SJ, Ren G, Liu JL, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. J Biol Chem. 2008; 283(34):23473–23484.

    Article  CAS  PubMed  Google Scholar 

  19. Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, Dey SK. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A. 2007;104(38):15144–15149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010;82(4):791–801.

    Article  CAS  PubMed  Google Scholar 

  21. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–2840.

    Article  CAS  PubMed  Google Scholar 

  22. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.

    Article  CAS  PubMed  Google Scholar 

  23. Altmäe S, Martinez-Conejero JA, Salumets A, Simon C, Horcajadas JA, Stavreus-Evers A. Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. Mol Hum Reprod. 2010;16(3):178–187.

    Article  PubMed  CAS  Google Scholar 

  24. Fernando RL, Nettleton D, Southey BR, Dekkers JC, Rothschild MF, Soller M. Controlling the proportion of false positives in multiple dependent tests. Genetics. 2004;166(1):611–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  26. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  27. Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3.

    Article  PubMed  Google Scholar 

  28. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1–2):279–284.

    Article  CAS  PubMed  Google Scholar 

  29. Riesewijk A, Martin J, van Os R, et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003; 9(5):253–264.

    Article  CAS  PubMed  Google Scholar 

  30. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934.

    Article  CAS  PubMed  Google Scholar 

  32. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008; 105(5):1608–1613.

    Article  CAS  Google Scholar 

  33. Haouzi D, Mahmoud K, Fourar M, et al. Identification of new biomarkers of human endometrial receptivity in the natural cycle. Hum Reprod. 2009;24(1):198–205.

    Article  CAS  PubMed  Google Scholar 

  34. Mirkin S, Arslan M, Churikov D, et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005;20(8):2104–2117.

    Article  CAS  PubMed  Google Scholar 

  35. Pan Q, Luo X, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13(11):797–806.

    Article  CAS  PubMed  Google Scholar 

  36. Li R, Qiao J, Wang L, et al. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. von Rango U, Classen-Linke I, Krusche CA, Beier HM. The receptive endometrium is characterized by apoptosis in the glands. Hum Reprod. 1998;13(11):3177–3189.

    Article  Google Scholar 

  38. Zhang D, Lei C, Zhang W. Up-regulated monoamine oxidase in the mouse uterus during the peri-implantation period. Arch Gynecol Obstet. 2011;284(4):861–866.

    Article  CAS  PubMed  Google Scholar 

  39. Igci YZ, Arslan A, Akarsu E, et al. Differential expression of a set of genes in follicular and classic variants of papillary thyroid carcinoma. Endocr Pathol. 2011;22(2):86–96.

    Article  PubMed  Google Scholar 

  40. Pan SH, Chao YC, Hung PF, et al. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J Clin Invest. 2011;121(8):3189–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Michel V, Bakovic M. The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J. 2009;23(8): 2749–2758.

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Lu WG, Ye F, et al. Hes1/Hes5 gene inhibits differentiation via down-regulating Hash1 and promotes proliferation in cervical carcinoma cells. Int J Gynecol Cancer. 2010;20(7):1109–1116.

    Article  PubMed  Google Scholar 

  43. Coffee RL Jr, Tessier CR, Woodruff EA 3rd, Broadie K. Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. Dis Model Mech. 2010;3(7–8):471–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaziel-Sovran A, Segura MF, Di Micco R, et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 2011;20(1):104–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/ reperfusion-induced cardiac injury. Circulation. 2010;122(13): 1308–1318.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qian K, Hu L, Chen H, et al. Hsa-miR-222 is involved in differentiation of endometrial stromal cells in vitro. Endocrinology. 2009;150(10):4734–4743.

    Article  CAS  PubMed  Google Scholar 

  47. Aghajanova L, Hamilton AE, Giudice LC. Uterine receptivity to human embryonic implantation: histology, biomarkers, and transcriptomics. Semin Cell Dev Biol. 2008;19(2):204–211.

    Article  CAS  PubMed  Google Scholar 

  48. Driak D, Dvorska M, Svandova I, et al. Changes in expression of some apoptotic markers in different types of human endometrium. Folia Biol (Praha). 2011;57(3):104–111.

    CAS  PubMed  Google Scholar 

  49. Altmäe S, Reimand J, Hovatta O, et al. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Mol Endocrinol. 2012;26(1):203–217.

    Article  PubMed  CAS  Google Scholar 

  50. Dickinson RE, Duncan WC. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction. 2010;139(4):697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen Q, Zhang Y, Lu J, et al. Embryo-uterine cross-talk during implantation: the role of Wnt signaling. Mol Hum Reprod. 2009;15(4):215–221.

    Article  CAS  PubMed  Google Scholar 

  52. Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod. 2009;24(10):2541–2548.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Kodithuwakku SP, Ng PY, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro coculture study. Hum Reprod. 2010;25(2):479–490.

    Article  PubMed  CAS  Google Scholar 

  54. Kao LC, Tulac S, Lobo S, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143(6):2119–2138.

    Article  CAS  PubMed  Google Scholar 

  55. Horcajadas JA, Pellicer A, Simon C. Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum Reprod Update. 2007;13(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  56. Hu W, Feng Z, Teresky AK, Levine AJ. p53 regulates maternal reproduction through LIF. Nature. 2007;450(7170):721–724.

    Article  CAS  PubMed  Google Scholar 

  57. Feng Z, Zhang C, Kang HJ, et al. Regulation of female reproduction by p53 and its family members. FASEB J. 2011;25(7): 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Massuto DA, Kneese EC, Johnson GA, et al. Transforming growth factor beta (TGFB) signaling is activated during porcine implantation: proposed role for latency-associated peptide interactions with integrins at the conceptus-maternal interface. Reproduction. 2010;139(2):465–478.

    Article  CAS  PubMed  Google Scholar 

  59. Genbacev OD, Prakobphol A, Foulk RA, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299(5605):405–408.

    Article  CAS  PubMed  Google Scholar 

  60. Dominguez F, Yanez-Mo M, Sanchez-Madrid F, Simon C. Embryonic implantation and leukocyte transendothelial migration: different processes with similar players? FASEB J. 2005; 19(9):1056–1060.

    Article  CAS  PubMed  Google Scholar 

  61. Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One. 2008;3(6):e2436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Boren T, Xiong Y, Hakam A, et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 2008;110(2):206–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Altmäe PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmäe, S., Martinez-Conejero, J.A., Esteban, F.J. et al. MicroRNAs miR-30b, miR-30d, and miR-494 Regulate Human Endometrial Receptivity. Reprod. Sci. 20, 308–317 (2013). https://doi.org/10.1177/1933719112453507

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112453507

Keywords

Navigation