1932

Abstract

It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the , mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071740
2015-02-10
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/77/1/annurev-physiol-021014-071740.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071740&mimeType=html&fmt=ahah

Literature Cited

  1. Davis GW. 1.  2013. Homeostatic signaling and the stabilization of neural function. Neuron 80:3718–28 [Google Scholar]
  2. Marder E. 2.  2011. Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. 108:Suppl. 315542–48 [Google Scholar]
  3. Turrigiano G. 3.  2011. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34:189–103 [Google Scholar]
  4. Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T. 4.  et al. 2014. Krüppel mediates the selective rebalancing of ion channel expression. Neuron 82:3537–44 [Google Scholar]
  5. Temporal S, Desai M, Khorkova O, Varghese G, Dai A. 5.  et al. 2012. Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J. Neurophysiol. 107:2718–27 [Google Scholar]
  6. Nerbonne JM, Gerber BR, Norris A, Burkhalter A. 6.  2008. Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents. J. Physiol. 586:61565–79 [Google Scholar]
  7. Wenner P. 7.  2011. Mechanisms of GABAergic homeostatic plasticity. Neural Plast. 2011:489470 [Google Scholar]
  8. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 8.  1998. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:6670892–96 [Google Scholar]
  9. Turrigiano GG, Nelson SB. 9.  2004. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5:297–107 [Google Scholar]
  10. O'Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL. 10.  1998. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:51067–78 [Google Scholar]
  11. Davis GW. 11.  2006. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29:307–23 [Google Scholar]
  12. Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW. 12.  2006. Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52:4663–77 [Google Scholar]
  13. Frank CA. 13.  2014. Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 78:63–74 [Google Scholar]
  14. Maffei A, Fontanini A. 14.  2009. Network homeostasis: a matter of coordination. Curr. Opin. Neurobiol. 19:2168–73 [Google Scholar]
  15. Lazarevic V, Pothula S, Andres-Alonso M, Fejtova A. 15.  2013. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front. Cell. Neurosci. 7:244 [Google Scholar]
  16. Wondolowski J, Dickman D. 16.  2013. Emerging links between homeostatic synaptic plasticity and neurological disease. Front. Cell. Neurosci. 7:223 [Google Scholar]
  17. Watt AJ, Desai NS. 17.  2010. Homeostatic plasticity and STDP: keeping a neuron's cool in a fluctuating world. Front. Synaptic Neurosci. 2:5 [Google Scholar]
  18. Plomp JJ, van Kempen GT, Molenaar PC. 18.  1992. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in α-bungarotoxin-treated rats. J. Physiol. 458:487–99 [Google Scholar]
  19. Mahoney RE, Rawson JM, Eaton BA. 19.  2014. An age-dependent change in the set point of synaptic homeostasis. J. Neurosci. 34:62111–19 [Google Scholar]
  20. Cull-Candy SG, Miledi R, Trautmann A, Uchitel OD. 20.  1980. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J. Physiol. 299:621–38 [Google Scholar]
  21. Schneggenburger R, Han Y, Kochubey O. 21.  2012. Ca2+ channels and transmitter release at the active zone. Cell Calcium 52:3–4199–207 [Google Scholar]
  22. Kitano H. 22.  2004. Biological robustness. Nat. Rev. Genet. 5:11826–37 [Google Scholar]
  23. Sneppen K, Krishna S, Semsey S. 23.  2010. Simplified models of biological networks. Annu. Rev. Biophys. 39:43–59 [Google Scholar]
  24. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A. 24.  1997. Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19:61237–48 [Google Scholar]
  25. Davis GW, Goodman CS. 25.  1998. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392:667182–86 [Google Scholar]
  26. Davis GW, Goodman CS. 26.  1998. Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr. Opin. Neurobiol. 8:1149–56 [Google Scholar]
  27. Dickman DK, Davis GW. 27.  2009. The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326:59561127–30 [Google Scholar]
  28. Müller M, Pym ECG, Tong A, Davis GW. 28.  2011. Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 69:4749–62 [Google Scholar]
  29. Davis GW, Bezprozvanny I. 29.  2001. Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63:847–69 [Google Scholar]
  30. Goold CP, Davis GW. 30.  2007. The BMP ligand Gbb gates the expression of synaptic homeostasis independent of synaptic growth control. Neuron 56:1109–23 [Google Scholar]
  31. Tsurudome K, Tsang K, Liao EH, Ball R, Penney J. 31.  et al. 2010. The Drosophila miR-310 cluster negatively regulates synaptic strength at the neuromuscular junction. Neuron 68:5879–93 [Google Scholar]
  32. Marie B, Pym E, Bergquist S, Davis GW. 32.  2010. Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog. J. Neurosci. 30:248071–82 [Google Scholar]
  33. Cohen JE, Lee PR, Chen S, Li W, Fields RD. 33.  2011. MicroRNA regulation of homeostatic synaptic plasticity. PNAS 108:2811650–55 [Google Scholar]
  34. Yi TM, Huang Y, Simon MI, Doyle J. 34.  2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97:94649–53 [Google Scholar]
  35. Wang X, Wang Q, Engisch KL, Rich MM. 35.  2010. Activity-dependent regulation of the binomial parameters p and n at the mouse neuromuscular junction in vivo. J. Neurophysiol. 104:52352–58 [Google Scholar]
  36. Liu G, Tsien RW. 36.  1995. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375:6530404–8 [Google Scholar]
  37. Burrone J, O'Byrne M, Murthy VN. 37.  2002. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420:6914414–18 [Google Scholar]
  38. Thiagarajan TC, Lindskog M, Tsien RW. 38.  2005. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47:5725–37 [Google Scholar]
  39. Deeg KE, Aizenman CD. 39.  2011. Sensory modality–specific homeostatic plasticity in the developing optic tectum. Nat. Neurosci. 14:5548–50 [Google Scholar]
  40. Goold CP, Nicoll RA. 40.  2010. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68:3512–28 [Google Scholar]
  41. Tyler WJ, Petzold GC, Pal SK, Murthy VN. 41.  2007. Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb. J. Neurosci. 27:359427–38 [Google Scholar]
  42. Kim SH, Ryan TA. 42.  2010. CDK5 serves as a major control point in neurotransmitter release. Neuron 67:5797–809 [Google Scholar]
  43. Bartley AF, Huang ZJ, Huber KM, Gibson JR. 43.  2008. Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits. J. Neurophysiol. 100:41983–94 [Google Scholar]
  44. Mitra A, Mitra SS, Tsien RW. 44.  2012. Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity. Nat. Neurosci. 15:250–57 [Google Scholar]
  45. Zhao C, Dreosti E, Lagnado L. 45.  2011. Homeostatic synaptic plasticity through changes in presynaptic calcium influx. J. Neurosci. 31:207492–96 [Google Scholar]
  46. Queenan BN, Lee KJ, Pak DTS. 46.  2012. Wherefore art thou, homeo(stasis)? Functional diversity in homeostatic synaptic plasticity. Neural Plast. 2012:718203 [Google Scholar]
  47. Murthy VN, Schikorski T, Stevens CF, Zhu Y. 47.  2001. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:4673–82 [Google Scholar]
  48. Wierenga CJ, Walsh MF, Turrigiano GG. 48.  2006. Temporal regulation of the expression locus of homeostatic plasticity. J. Neurophysiol. 96:42127–33 [Google Scholar]
  49. Echegoyen J, Neu A, Graber KD, Soltesz I. 49.  2007. Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. PLOS ONE 2:8e700 [Google Scholar]
  50. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. 50.  2013. Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron 80:2335–42 [Google Scholar]
  51. Weyhersmuller A, Hallermann S, Wagner N, Eilers J. 51.  2011. Rapid active zone remodeling during synaptic plasticity. J. Neurosci. 31:166041–52 [Google Scholar]
  52. Müller M, Liu KSY, Sigrist SJ, Davis GW. 52.  2012. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J. Neurosci. 32:4716574–85 [Google Scholar]
  53. Kim J, Tsien RW. 53.  2008. Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. Neuron 58:6925–37 [Google Scholar]
  54. Henry FE, McCartney AJ, Neely R, Perez AS, Carruthers CJL. 54.  et al. 2012. Retrograde changes in presynaptic function driven by dendritic mTORC1. J. Neurosci. 32:4817128–42 [Google Scholar]
  55. Penney J, Tsurudome K, Liao EH, Elazzouzi F, Livingstone M. 55.  et al. 2012. TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron 74:1166–78 [Google Scholar]
  56. Younger MA, Müller M, Tong A, Pym EC, Davis GW. 56.  2013. A presynaptic ENaC channel drives homeostatic plasticity. Neuron 79:61183–96 [Google Scholar]
  57. Müller M, Davis GW. 57.  2012. Transsynaptic control of presynaptic Ca2+ influx achieves homeostatic potentiation of neurotransmitter release. Curr. Biol. 22:121102–8 [Google Scholar]
  58. Schneggenburger R, Neher E. 58.  2000. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:6798889–93 [Google Scholar]
  59. Bollmann JH, Sakmann B, Borst JG. 59.  2000. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:5481953–57 [Google Scholar]
  60. Smith LA, Wang X, Peixoto AA, Neumann EK, Hall LM, Hall JC. 60.  1996. A Drosophila calcium channel α1 subunit gene maps to a genetic locus associated with behavioral and visual defects. J. Neurosci. 16:247868–79 [Google Scholar]
  61. Smith LA, Peixoto AA, Kramer EM, Villella A, Hall JC. 61.  1998. Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel α1 subunit in Drosophila. Genetics 149:31407–26 [Google Scholar]
  62. Bianchi L, Driscoll M. 62.  2002. Protons at the gate: DEG/ENaC ion channels help us feel and remember. Neuron 34:3337–40 [Google Scholar]
  63. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM. 63.  et al. 2002. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. PNAS 99:42338–43 [Google Scholar]
  64. Jasti J, Furukawa H, Gonzales EB, Gouaux E. 64.  2007. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:7160316–23 [Google Scholar]
  65. Chalfie M. 65.  2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10:144–52 [Google Scholar]
  66. Liu L, Johnson WA, Welsh MJ. 66.  2003. Drosophila DEG/ENaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance. PNAS 100:42128–33 [Google Scholar]
  67. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E. 67.  et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464:7286297–301 [Google Scholar]
  68. Schild L. 68.  2010. The epithelial sodium channel and the control of sodium balance. Biochim. Biophys. Acta 1802:121159–65 [Google Scholar]
  69. Wojtowicz JM, Atwood HL. 69.  1983. Maintained depolarization of synaptic terminals facilitates nerve-evoked transmitter release at a crayfish neuromuscular junction. J. Neurobiol. 14:5385–90 [Google Scholar]
  70. Awatramani GB, Price GD, Trussell LO. 70.  2005. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48:1109–21 [Google Scholar]
  71. Christie JM, Chiu DN, Jahr CE. 71.  2011. Ca2+-dependent enhancement of release by subthreshold somatic depolarization. Nat. Neurosci. 14:162–68 [Google Scholar]
  72. Paradis S, Sweeney ST, Davis GW. 72.  2001. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30:3737–49 [Google Scholar]
  73. Bergquist S, Dickman DK, Davis GW. 73.  2010. A hierarchy of cell intrinsic and target-derived homeostatic signaling. Neuron 66:2220–34 [Google Scholar]
  74. Schneggenburger R, Meyer AC, Neher E. 74.  1999. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23:2399–409 [Google Scholar]
  75. Thanawala MS, Regehr WG. 75.  2013. Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. J. Neurosci. 33:114625–33 [Google Scholar]
  76. Südhof T. 76.  2012. The presynaptic active zone. Neuron 75:111–25 [Google Scholar]
  77. Kim SH, Ryan TA. 77.  2013. Balance of calcineurin Aα and CDK5 activities sets release probability at nerve terminals. J. Neurosci. 33:218937–50 [Google Scholar]
  78. Lazarevic V, Schöne C, Heine M, Gundelfinger ED, Fejtova A. 78.  2011. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J. Neurosci. 31:2810189–200 [Google Scholar]
  79. Jiang X, Litkowski PE, Taylor AA, Lin Y, Snider BJ, Moulder KL. 79.  2010. A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing. J. Neurosci. 30:51798–809 [Google Scholar]
  80. Bacci A, Coco S, Pravettoni E, Schenk U, Armano S. 80.  et al. 2001. Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2. J. Neurosci. 21:176588–96 [Google Scholar]
  81. Haghighi AP, McCabe BD, Fetter RD, Palmer JE, Hom S, Goodman CS. 81.  2003. Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39:2255–67 [Google Scholar]
  82. Cheng L, Locke C, Davis GW. 82.  2011. S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. J. Cell Biol. 194:6921–35 [Google Scholar]
  83. Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. 83.  2013. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron 78:3510–22 [Google Scholar]
  84. Laplante M, Sabatini DM. 84.  2012. mTOR signaling in growth control and disease. Cell 149:2274–93 [Google Scholar]
  85. Giagtzoglou N, Lin YQ, Haueter C, Bellen HJ. 85.  2009. Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction. J. Neurosci. 29:175628–39 [Google Scholar]
  86. Pilgram GSK, Potikanond S, van der Plas MC, Fradkin LG, Noordermeer JN. 86.  2011. The RhoGAP crossveinless-c interacts with Dystrophin and is required for synaptic homeostasis at the Drosophila neuromuscular junction. J. Neurosci. 31:2492–500 [Google Scholar]
  87. Frank CA, Pielage J, Davis GW. 87.  2009. A presynaptic homeostatic signaling system composed of the Eph receptor, Ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61:4556–69 [Google Scholar]
  88. Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhães TR, Goodman CS. 88.  2002. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33:4545–58 [Google Scholar]
  89. Purves D, Snider WD, Voyvodic JT. 89.  1988. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336:6195123–28 [Google Scholar]
  90. Wang T, Hauswirth AG, Tong A, Dickman DK, Davis GW. 90.  2014. Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity. Neuron 83:3616–29 [Google Scholar]
  91. Seppinen L, Pihlajaniemi T. 91.  2011. The multiple functions of collagen XVIII in development and disease. Matrix Biol. 30:283–92 [Google Scholar]
  92. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. 92.  2000. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19:61187–94 [Google Scholar]
  93. Veillard F, Saidi A, Burden RE, Scott CJ, Gillet L. 93.  et al. 2011. Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin. J. Biol. Chem. 286:4337158–67 [Google Scholar]
  94. Dhanabal M, Ramchandran R, Waterman MJ, Lu H, Knebelmann B. 94.  et al. 1999. Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274:1711721–26 [Google Scholar]
  95. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G. 95.  et al. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:2277–85 [Google Scholar]
  96. Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N. 96.  et al. 1999. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J. 18:164414–23 [Google Scholar]
  97. Nishimune H, Sanes JR, Carlson SS. 97.  2004. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature 432:7017580–87 [Google Scholar]
  98. Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL. 98.  et al. 2012. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76:2396–409 [Google Scholar]
  99. Sylwestrak EL, Ghosh A. 99.  2012. Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science 338:6106536–40 [Google Scholar]
  100. Missler M, Südhof TC, Biederer T. 100.  2012. Synaptic cell adhesion. Cold Spring Harb. Perspect. Biol. 4:4a005694 [Google Scholar]
  101. Vitureira N, Letellier M, White IJ, Goda Y. 101.  2012. Differential control of presynaptic efficacy by postsynaptic N-cadherin and β-catenin. Nat. Neurosci. 15:181–89 [Google Scholar]
  102. Timmerman C, Sanyal S. 102.  2012. Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster. Brain Res.148966–80
  103. Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W. 103.  et al. 2012. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 15:3431–40 [Google Scholar]
  104. Soden ME, Chen L. 104.  2010. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J. Neurosci. 30:5016910–21 [Google Scholar]
  105. Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. 105.  2005. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex. Cereb. Cortex 15:6834–45 [Google Scholar]
  106. Ramocki MB, Zoghbi HY. 106.  2008. Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455:7215912–18 [Google Scholar]
  107. Bourgeron T. 107.  2009. A synaptic trek to autism. Curr. Opin. Neurobiol. 19:2231–34 [Google Scholar]
  108. Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR. 108.  et al. 2012. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 135:41081–101 [Google Scholar]
  109. Daniels RW. 109.  2004. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J. Neurosci. 24:4610466–74 [Google Scholar]
  110. van der Plas MC, Pilgram GSK, Plomp JJ, de Jong A, Fradkin LG, Noordermeer JN. 110.  2006. Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction. J. Neurosci. 26:1333–44 [Google Scholar]
  111. Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS. 111.  et al. 2010. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68:61143–58 [Google Scholar]
  112. Thiagarajan TC, Piedras-Renteria ES, Tsien RW. 112.  2002. α- and βCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36:61103–14 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071740
Loading
/content/journals/10.1146/annurev-physiol-021014-071740
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error