1932

Abstract

Current influenza virus vaccines are annually reformulated to elicit protection by generating an immune response toward the virus strains that are predicted to circulate in the upcoming influenza season. These vaccines provide limited protection in cases of antigenic mismatch, when the vaccine and the circulating viral strains differ. The emergence of unexpected pandemic viruses presents an additional challenge to vaccine production. To increase influenza virus preparedness, much work has been dedicated to the development of a universal vaccine. Focusing on regions of viral proteins that are highly conserved across virus subtypes, vaccine strategies involving the matrix 2 protein, stalk domain of the hemagglutinin, and multivalent approaches have provided broad-based protection in animal models and show much promise. This review summarizes the most encouraging advances in the field with a focus on novel vaccine designs that have yielded promising preclinical and clinical data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-120611-145115
2013-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/64/1/annurev-med-120611-145115.html?itemId=/content/journals/10.1146/annurev-med-120611-145115&mimeType=html&fmt=ahah

Literature Cited

  1. Palese P, Shaw ML. 1.  2006. Orthomyxoviridae: the viruses and their replication. Fields Virology D Knipe, P Howley 1648–89 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  2. Treanor JJ. 2.  2009. Influenza viruses, including avian influenza and swine influenza. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases GL Mandell, JE Bennett, R Dolin 2265–88 Orlando, FL: Churchill Livingstone, 7th ed. [Google Scholar]
  3. Kilbourne ED, Schulman JL, Schild GC. 3.  et al. 1971. Related studies of a recombinant influenza-virus vaccine. I. Derivation and characterization of virus and vaccine. J. Infect. Dis. 124:449–62 [Google Scholar]
  4. Palese P. 4.  2006. Making better influenza virus vaccines?. Emerg. Infect. Dis. 12:61–65 [Google Scholar]
  5. 5. World Health Organization 2009. Pandemic influenza vaccine manufacturing and process timeline: pandemic (H1N1) briefing note 7. http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090806/en/index.html
  6. Donis RO, Cox NJ. 6.  2011. Prospecting the influenza hemagglutinin to develop universal vaccines. Clin. Infect. Dis. 52:1010–12 [Google Scholar]
  7. Carrat F, Flahault A. 7.  2007. Influenza vaccine: the challenge of antigenic drift. Vaccine 25:6852–62 [Google Scholar]
  8. Bridges CB, Thompson WW, Meltzer MI. 8.  et al. 2000. Effectiveness and cost-benefit of influenza vaccination of healthy working adults: a randomized controlled trial. JAMA 284:1655–63 [Google Scholar]
  9. de Jong JC, Beyer WE, Palache AM. 9.  et al. 2000. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 61:94–99 [Google Scholar]
  10. Belshe RB. 10.  2010. The need for quadrivalent vaccine against seasonal influenza. Vaccine 28:Suppl. 4D45–53 [Google Scholar]
  11. Belshe RB, Coelingh K, Ambrose CS. 11.  et al. 2010. Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine 28:2149–56 [Google Scholar]
  12. Osterholm MT, Kelley NS, Sommer A. 12.  et al. 2012. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12:36–44 [Google Scholar]
  13. Fan J, Liang X, Horton MS. 13.  et al. 2004. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22:2993–3003 [Google Scholar]
  14. Neirynck S, Deroo T, Saelens X. 14.  et al. 1999. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5:1157–63 [Google Scholar]
  15. Zebedee SL, Lamb RA. 15.  1988. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J. Virol. 62:2762–72 [Google Scholar]
  16. Treanor JJ, Tierney EL, Zebedee SL. 16.  et al. 1990. Passively transferred monoclonal antibody to the M2 protein inhibits influenza A virus replication in mice. J. Virol. 64:1375–77 [Google Scholar]
  17. El Bakkouri K, Descamps F, De Filette M. 17.  et al. 2011. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 186:1022–31 [Google Scholar]
  18. Fiers W, De Filette M, El Bakkouri K. 18.  et al. 2009. M2e-based universal influenza A vaccine. Vaccine 27:6280–83 [Google Scholar]
  19. Heinen PP, Rijsewijk FA, de Boer-Luijtze EA. 19.  et al. 2002. Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus. J. Gen. Virol. 83:1851–59 [Google Scholar]
  20. Price GE, Soboleski MR, Lo CY. 20.  et al. 2010. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses. PLoS One 5:e13162 [Google Scholar]
  21. Song JM, Van Rooijen N, Bozja J. 21.  et al. 2011. Vaccination inducing broad and improved cross protection against multiple subtypes of influenza A virus. Proc. Natl. Acad. Sci. USA 108:757–61 [Google Scholar]
  22. Bianchi E, Liang X, Ingallinella P. 22.  et al. 2005. Universal influenza B vaccine based on the maturational cleavage site of the hemagglutinin precursor. J. Virol. 79:7380–88 [Google Scholar]
  23. Hai R, Krammer F, Tan GS. 23.  et al. 2012. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J. Virol. 86:5774–81 [Google Scholar]
  24. Gerhard W, Mozdzanowska K, Zharikova D. 24.  2006. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis. 12:569–74 [Google Scholar]
  25. Krystal M, Elliott RM, Benz EW Jr. 25.  et al. 1982. Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes. Proc. Natl. Acad. Sci. USA 79:4800–4 [Google Scholar]
  26. Okuno Y, Isegawa Y, Sasao F. 26.  et al. 1993. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67:2552–58 [Google Scholar]
  27. Wang TT, Tan GS, Hai R. 27.  et al. 2010. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathogens 6:e1000796 [Google Scholar]
  28. Ekiert DC, Bhabha G, Elsliger MA. 28.  et al. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–51 [Google Scholar]
  29. Ekiert DC, Friesen RH, Bhabha G. 29.  et al. 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–50 [Google Scholar]
  30. Sui J, Hwang WC, Perez S. 30.  et al. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16:265–73 [Google Scholar]
  31. Kashyap AK, Steel J, Oner AF. 31.  et al. 2008. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl. Acad. Sci. USA 105:5986–91 [Google Scholar]
  32. Throsby M, van den Brink E, Jongeneelen M. 32.  et al. 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3:e3942 [Google Scholar]
  33. Corti D, Voss J, Gamblin SJ. 33.  et al. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850–56 [Google Scholar]
  34. Walker JA, Sakaguchi T, Matsuda Y. 34.  et al. 1992. Location and character of the cellular enzyme that cleaves the hemagglutinin of a virulent avian influenza virus. Virology 190:278–87 [Google Scholar]
  35. Wang TT, Tan GS, Hai R. 35.  et al. 2010. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 107:18979–84 [Google Scholar]
  36. Bommakanti G, Citron MP, Hepler RW. 36.  et al. 2010. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl. Acad. Sci. USA 107:13701–6 [Google Scholar]
  37. Sagawa H, Ohshima A, Kato I. 37.  et al. 1996. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 77:Pt. 71483–87 [Google Scholar]
  38. Steel J, Lowen AC, Wang TT. 38.  et al. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1:1pii:e00018–10 [Google Scholar]
  39. Weaver EA, Rubrum AM, Webby RJ. 39.  et al. 2011. Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin. PLoS One 6:e18314 [Google Scholar]
  40. Chen MW, Cheng TJ, Huang Y. 40.  et al. 2008. A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. USA 105:13538–43 [Google Scholar]
  41. Wei CJ, Boyington JC, McTamney PM. 41.  et al. 2010. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329:1060–64 [Google Scholar]
  42. Ledgerwood JE, Wei CJ, Hu Z. 42.  et al. 2011. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infect. Dis. 11:916–24 [Google Scholar]
  43. Sui J, Sheehan J, Hwang WC. 43.  et al. 2011. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin. Infect. Dis. 52:1003–9 [Google Scholar]
  44. Li SQ, Schulman JL, Moran T. 44.  et al. 1992. Influenza A virus transfectants with chimeric hemagglutinins containing epitopes from different subtypes. J. Virol. 66:399–404 [Google Scholar]
  45. Pica N, Hai R, Krammer F. 45.  et al. 2012. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc. Natl. Acad. Sci. USA 109:2573–78 [Google Scholar]
  46. Palese P, Wang TT. 46.  2011. Why do influenza virus subtypes die out? A hypothesis. mBio 2:5pii: e00150–11 doi: 10.1128 /mBio.00150-11 [Google Scholar]
  47. Wrammert J, Koutsonanos D, Li GM. 47.  et al. 2011. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208:181–93 [Google Scholar]
  48. Murphy BR, Kasel JA, Chanock RM. 48.  1972. Association of serum anti-neuraminidase antibody with resistance to influenza in man. N. Engl. J. Med. 286:1329–32 [Google Scholar]
  49. Schulman JL, Kilbourne ED. 49.  1969. Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus. Proc. Natl. Acad. Sci. USA 63:326–33 [Google Scholar]
  50. Schulman JL, Khakpour M, Kilbourne ED. 50.  1968. Protective effects of specific immunity to viral neuraminidase on influenza virus infection of mice. J. Virol. 2:778–86 [Google Scholar]
  51. Mozdzanowska K, Maiese K, Furchner M. 51.  et al. 1999. Treatment of influenza virus-infected SCID mice with nonneutralizing antibodies specific for the transmembrane proteins matrix 2 and neuraminidase reduces the pulmonary virus titer but fails to clear the infection. Virology 254:138–46 [Google Scholar]
  52. Gravel C, Li C, Wang J. 52.  et al. 2011. Quantitative analyses of all influenza type A viral hemagglutinins and neuraminidases using universal antibodies in simple slot blot assays. J. Visualized Exp. Apr. 4:50). pii: 2784 doi: 10.3791/2784 [Google Scholar]
  53. Townsend AR, Rothbard J, Gotch FM. 53.  et al. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–68 [Google Scholar]
  54. Gotch F, McMichael A, Smith G. 54.  et al. 1987. Identification of viral molecules recognized by influenza-specific human cytotoxic T lymphocytes. J. Exp. Med. 165:408–16 [Google Scholar]
  55. Hillaire ML, Osterhaus AD, Rimmelzwaan GF. 55.  2011. Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J. Biomed. Biotechnol. 2011:939860 [Google Scholar]
  56. McMichael AJ, Gotch FM, Noble GR. 56.  et al. 1983. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309:13–17 [Google Scholar]
  57. Sette A, Sidney J. 57.  1999. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–12 [Google Scholar]
  58. Assarsson E, Bui HH, Sidney J. 58.  et al. 2008. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J. Virol. 82:12241–51 [Google Scholar]
  59. Berthoud TK, Hamill M, Lillie PJ. 59.  et al. 2011. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin. Infect. Dis. 52:1–7 [Google Scholar]
  60. Lillie PJ, Berthoud TK, Powell TJ. 60.  et al. 2012. A preliminary assessment of the efficacy of a T cell-based influenza vaccine, MVA-NP+M1, in humans. Clin. Infect. Dis. 55:119–25 [Google Scholar]
  61. Levi R, Arnon R. 61.  1996. Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection. Vaccine 14:85–92 [Google Scholar]
  62. Ben-Yedidia T, Marcus H, Reisner Y. 62.  et al. 1999. Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection. Int. Immunol. 11:1043–51 [Google Scholar]
  63. Adar Y, Singer Y, Levi R. 63.  et al. 2009. A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine 27:2099–107 [Google Scholar]
  64. Atsmon J, Kate-Ilovitz E, Shaikevich D. 64.  et al. 2012. Safety and immunogenicity of Multimeric-001—a novel universal influenza vaccine. J. Clin. Immunol. 32:595–603 [Google Scholar]
  65. Lamere MW, Moquin A, Lee FE. 65.  et al. 2011. Regulation of antinucleoprotein IgG by systemic vaccination and its effect on influenza virus clearance. J. Virol. 85:5027–35 [Google Scholar]
  66. Epstein SL, Kong WP, Misplon JA. 66.  et al. 2005. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23:5404–10 [Google Scholar]
  67. Ulmer JB, Donnelly JJ, Parker SE. 67.  et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259:1745–49 [Google Scholar]
  68. Wraith DC, Vessey AE, Askonas BA. 68.  1987. Purified influenza virus nucleoprotein protects mice from lethal infection. J. Gen. Virol. 68:Pt. 2433–40 [Google Scholar]
  69. Bender BS, Bell WE, Taylor S. 69.  et al. 1994. Class I major histocompatibility complex-restricted cytotoxic T lymphocytes are not necessary for heterotypic immunity to influenza. J. Infect. Dis. 170:1195–200 [Google Scholar]
  70. Saha S, Yoshida S, Ohba K. 70.  et al. 2006. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus. Virology 354:48–57 [Google Scholar]
  71. Thompson WW, Shay DK, Weintraub E. 71.  et al. 2004. Influenza-associated hospitalizations in the United States. JAMA 292:1333–40 [Google Scholar]
  72. Thompson WW, Comanor L, Shay DK. 72.  2006. Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease. J. Infect. Dis. 194:Suppl. 2S82–91 [Google Scholar]
/content/journals/10.1146/annurev-med-120611-145115
Loading
/content/journals/10.1146/annurev-med-120611-145115
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error