Skip to main content
Log in

Determination of food sources of marine invertebrates from a subtidal sand community using analyses of fatty acids and stable isotopes

  • Ecology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The fatty acid compositions and stable isotope ratios of carbon, nitrogen, and sulfur were analyzed in the bivalve mollusks Mactra chinensis, Pandora pulchella, Felaniella usta, and Megangulus zyonoensis, the polychaete Chaetopterus cautus, and the main sources of organic matter in a subtidal sand bottom community in Vostok Bay (Sea of Japan). The fatty acid composition and stable isotope ratios of some bivalves is likely to be indicative of substantial inputs from benthic microalgae and an important role of microbial food chains. Only the filter-feeding polychaete C. cautus showed similarity in these characteristics to suspended particulate organic matter synthesized by phytoplankton. It is suggested that the contribution of benthic microalgae to the diet of a consumer organism, inferred solely from the carbon stable isotope analysis, can be significantly overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiyashko, S.I., Study of Carbon Fluxes in Marine Ecosystems by Natural 13C/12C Stable Isotope Ratios, Biol. Morya, 1987, no. 5, pp. 3–12.

  2. Kiyashko, S.I., Kharlamenko, V.I., and Imbs, A.B., Stable Isotope Ratios and Fatty Acids As Markers of Food Sources of Deposit-Feeding Invertebrates, Biol. Morya, 1998, vol. 24, pp. 169–174.

    Google Scholar 

  3. Levin, V.S., Metody analiza sostava fizicheskikh svoistv sublitoral’nykh morskikh donnykh osadkov v ekologicheskikh issledovaniyakh (Methods of Analysis of the Composition and Physical Properties of Subtidal Marine Bottom Sediments in Ecological Research), Vladivostok: Dal. Vost. Otd. Akad. Nauk SSSR (Far East Division of Russian Academy of Sciences), 1987.

    Google Scholar 

  4. Ryabushko, L.I., Diatoms of the Upper Subtidal Zone of the Northwestern Sea of Japan, Abstract of Cand. Sci. Dissertation, Kovalevsky Institute of Marine Biology, Academy of Sciences of the Ukrainian SSR, Sevastopol, 1986.

    Google Scholar 

  5. Tarasov, V.G., Trophic Zonation and Distribution of Soft Bottom Communities in Vostok Bay, Sea of Japan, Biol. Morya, 1978, no. 6, pp. 16–22.

  6. Cherbadzhi, I.I. and Tarasov, V.G., Photosynthesis of Soft Botom Communities of Vostok Bay (Sea of Japan), Biol. Morya, 1980, no. 2, pp. 21–30.

  7. Ackman, R.G., Tocher, C.S., and McLachlan J., Marine Phytoplankter Fatty Acids, J. Fish. Res. Board Can., 1968, vol. 25, pp. 1603–1620.

    CAS  Google Scholar 

  8. Andersson, B.A. and Holman, R.T., Mass-Spectrometric Localization of Methyl Branching in Fatty Acids Using Acylpyrrolidines, Lipids, 1975, vol. 10, pp. 716–718.

    Article  PubMed  CAS  Google Scholar 

  9. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    PubMed  CAS  Google Scholar 

  10. Carman, K.R. and Fry, B. Small-sample Methods for δ13C and δ15N Analysis of the Diets of Marsh Meiofaunal Species Using Natural-Abundance and Tracer-Addition Isotope Techniques, Mar. Ecol. Progr. Ser., 2002, vol. 240, pp. 85–92.

    Article  CAS  Google Scholar 

  11. Carreau, J.P. and Dubacq, J.P., Adaptation of Macroscale Method to the Micro-scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390.

    Article  CAS  Google Scholar 

  12. Christie, W.W., Equivalent Chain-lengths of Methyl Ester Derivatives of Fatty Acids on Gas Chromatography, J. Chromatogr., 1988, vol. 447, pp. 305–314.

    Article  CAS  Google Scholar 

  13. Corbisier, T.N., Petti, M.A.V., Skowronski, R.S.P., and Brito, T.A.S., Trophic Relationships in the Nearshore Zone of Martel Inlet (King George Island, Antarctica): δ13C Stable-Isotope Analysis, Polar Biol., 2004, vol. 27, pp. 75–82.

    Article  Google Scholar 

  14. Couch, C.A., Carbon and Nitrogen Stable Isotopes of Meiobenthos and Their Food Resources, Estuar. Coast. Shelf Sci., 1989, vol. 28, pp. 433–441.

    Article  Google Scholar 

  15. Currin, C.A., Newell, S.Y., and Paerl, H.W., The Role of Standing Dead Spartina alterniflora and Benthic Microalgae in Salt Marsh Food Webs: Considerations Based on Multiple Stable Isotope Analysis, Mar. Ecol. Prog. Ser., 1995, vol. 121, pp. 99–116.

    Article  Google Scholar 

  16. Dalsgaard, J., St. John, M., Kattner, G., et al., Fatty Acid Trophic Markers in the Pelagic Marine Environment, Adv. Mar. Biol., London: Academic Press, 2003, vol. 46, pp. 225–340.

    Google Scholar 

  17. Fry, B., Food Web Structure of Georges Bank from Stable C, N, and S Isotopic Compositions, Limnol. Oceanogr., 1988, vol. 33, pp. 1182–1190.

    Article  CAS  Google Scholar 

  18. Fry, B. and Sherr, E.B., δ13C Measurements as Indicators of Carbon Flow in Marine and Freshwater Ecosystems, Contrib. Mar. Sci., 1984, vol. 27, pp. 13–47.

    CAS  Google Scholar 

  19. Gearing, J.N., Gearing, P.J., Rudnick, D.R., et al., Isotopic Variability of Organic Carbon in a Phytoplankton-based, Temperate Estuary, Geochim. Cosmochim. Acta., 1984, vol. 48, pp. 1089–1098.

    Article  CAS  Google Scholar 

  20. Gillian, F.T. and Hogg, R.W., A Method for Estimation of Bacterial Biomass and Community Structure in Mangrove Associated Sediments, J. Microbiol. Meth., 1984, vol. 2, pp. 275–293.

    Article  Google Scholar 

  21. Hobson, K.A., Ambrose, W.G., and Renaud, P.E., Sources of Primary Production, Benthic-Pelagic Coupling, and Trophic Relationships within the Northeast Water Polynya: Insights from δ13C and δ15N Analysis, Mar. Ecol. Prog. Ser., 1995, vol. 128, pp. 1–10.

    Article  Google Scholar 

  22. Howell, K.L., Pond, D.W., Billett, D.S.M., and Tyler, P.A., Feeding Ecology of Deep-Sea Seastars (Echinodermata: Asteroidea): A Fatty-Acid Biomarker Approach, Mar. Ecol. Prog. Ser., 2003, vol. 255, pp. 193–206.

    Article  CAS  Google Scholar 

  23. Ishihi, Y., Feeding of the Bivalve Theora lubrica on Benthic Microalgae: Isotopic Evidence, Mar. Ecol. Prog. Ser., 2003, vol. 255, pp. 303–309.

    Article  Google Scholar 

  24. Kanaya, G., Nobata, E., Toya, T., and Kikuchi, E., Effects of Different Feeding Habits of Three Bivalve Species on Sediment Characteristics and Benthic Diatom Abundance, Mar. Ecol. Prog. Ser., 2005, vol. 299, pp. 67–78.

    Article  Google Scholar 

  25. Kang, C.K., Kim, J.B., Lee, K.S., et al., Trophic Importance of Benthic Microalgae to Macrozoobenthos in Coastal Bay Systems in Korea: Dual Stable C and N Isotope Analyses, Mar. Ecol. Prog. Ser., 2003, vol. 259, pp. 79–92.

    Article  CAS  Google Scholar 

  26. Kang, C.K., Lee, Y.W., Choy, E.J., et al., Microphytobenthos Seasonality Determines Growth and Reproduction in Intertidal Bivalves, Mar. Ecol. Prog. Ser., 2006, vol. 315, pp. 113–127.

    Article  Google Scholar 

  27. Kang, C.K., Sauriau, P.G., Richard P., and Blanchard, G.F., Food Sources of the Infaunal Suspension-Feeding Bivalve Cerastoderma edule in a Muddy Sandflat of Marennes-Oléron Bay, As Determined by Analyses of Carbon and Nitrogen Stable Isotopes, Mar. Ecol. Prog. Ser., 1999, vol. 187, pp. 147–158.

    Article  Google Scholar 

  28. Kendall, C. and Grim E., Combustion Tube Method for Measurement of Nitrogen Isotope Ratios Using Calcium Oxide for Total Removal of Carbon Dioxide and Water, Anal. Chem., 1990, vol. 62, pp. 526–529.

    Article  CAS  Google Scholar 

  29. Kharlamenko, V.I., Kiyashko, S.I., Imbs, A.B., and Vyshkvartzev, D.I., Identification of Food Sources of Invertebrates from the Seagrass Zostera marina Community Using Carbon and Sulfur Stable Isotope Ratio and Fatty Acid Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 220, pp. 103–117.

    Article  CAS  Google Scholar 

  30. Kharlamenko, V.I., Zhukova, N.V., Khotimchenko, S.V., et al., Fatty Acids as Markers of Food Sources in a Shallow-Water Hydrothermal Ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands), Mar. Ecol. Prog. Ser., 1995, vol. 120, pp. 231–241.

    Article  CAS  Google Scholar 

  31. Machas, R., Santos, R., and Peterson, B., Tracing the Flow of Organic Matter from Primary Producers to Filter Feeders in Ria Formosa Lagoon, Southern Portugal, Estuaries, 2003, vol. 26, pp. 846–856.

    Article  Google Scholar 

  32. MacIntyre, H.L., Geider, R.J., and Miller, D.C., Microphytobenthos: The Ecological Role of the “Secret Garden” of Unvegetated, Shallow-Water Marine Habitats. 1. Distribution, Abundance and Primary Production, Estuaries, 1996, vol. 19, pp. 186–201.

    Article  Google Scholar 

  33. McConnaughey, T. and McRoy, C.P., δ13C Label Identifies Eelgrass (Zostera marina) Carbon in an Alaskan Estuarine Food Web, Mar. Biol., 1979, vol. 53, pp. 263–269.

    Article  Google Scholar 

  34. Miller, D.C., Geider, R.J., and MacIntyre, H.L., Microphytobenthos: The Ecological Role of the “Secret Garden” of Unvegetated, Shallow-Water Marine Habitats. 2. Role in Sediment Stability and Shallow-Water Food Webs, Estuaries, 1996, vol. 19, pp. 202–212.

    Article  Google Scholar 

  35. Moens, T., Luyten, C., and Middelburg, J.J., et al., Tracing Organic Matter Sources of Estuarine Tidal Flat Nematodes with Stable Carbon Isotopes, Mar. Ecol. Prog. Ser., 2002, vol. 234, pp. 127–137.

    Article  Google Scholar 

  36. Moncreiff, C.A. and Sullivan, M.J., Trophic Importance of Epiphytic Algae in Subtropical Seagrass Beds: Evidence from Multiple Stable Isotope Analyses, Mar. Ecol. Prog. Ser., 2001, vol. 215, pp. 93–106.

    Article  CAS  Google Scholar 

  37. Nadon, M.O. and Himmelman, J.H., Stable Isotopes in Subtidal Food Webs: Have Enriched Carbon Ratios in Benthic Consumers Been Misinterpreted? Limnol. Oceanogr., 2006, vol. 51, pp. 2828–2836.

    Article  CAS  Google Scholar 

  38. Park, S., Brett, M.T., Müller-Navarra, D.C., et al., Heterotrophic Nanoflagellates and Increased Essential Fatty Acids during Microcystis Decay, Aquat. Microb. Ecol., 2003, vol. 33, pp. 201–205.

    Article  Google Scholar 

  39. Piveteau, F., Gandemer, G., Baud, J.P., and Demaimay, M., Changes in Lipid and Fatty Acid Compositions of European Oysters Fattened with Skeletonema costatum Diatom for Six Weeks in Ponds, Aquacult. Intern., 1999, vol. 7, pp. 341–355.

    Article  CAS  Google Scholar 

  40. Riera, P., δ15N of Organic Matter Sources and Benthic Invertebrates along an Estuarine Gradient in Marennes-Oléron Bay (France): Implications for the Study of Trophic Structure, Mar. Ecol. Prog. Ser., 1998, vol. 166, pp. 143–150.

    Article  Google Scholar 

  41. Riera, P., Montagna, P.A., Kalke, R.D., and Richard, P., Utilization of Estuarine Organic Matter during Growth and Migration by Juvenile Brown Shrimp Penaeus aztecus in a South Texas Estuary, Mar. Ecol. Prog. Ser., 2000, vol. 199, pp. 205–216.

    Article  Google Scholar 

  42. Riera, P. and Richard, P., Isotopic Determination of Food Sources of Crassostrea gigas along a Trophic Gradient in the Estuarine Bay of Marennes-Oléron, Estuar. Coast. Shelf Sci., 1996, vol. 42, pp. 347–360.

    Article  Google Scholar 

  43. Riera, P., Richard, P., Gremare, A., and Blanchard, G., Food Source of Intertidal Nematodes in the Bay of Marennes-Oléron (France), As Determined by Dual Stable Isotope Analysis, Mar. Ecol. Prog. Ser., 1996, vol. 142, pp. 303–309.

    Article  CAS  Google Scholar 

  44. Sargent, J.R., Parkes, R.J., Mueller-Harvey, I., and Henderson, R.J., Lipid Biomarkers in Marine Ecology, Microbes in the Sea, Chichester: Ellis Horwood, 1987, pp. 119–138.

    Google Scholar 

  45. Sargent, J.R. and Whittle, K.J., Lipids and Hydrocarbons in the Marine Food Web, Analysis of Marine Ecosystems, London; New York: Academic Press, 1981, pp. 491–533.

    Google Scholar 

  46. Takai, N., Yorozu, A., Tanimoto, T., et al., Transport Pathways of Microphytobenthos-originating Organic Carbon in the Food Web of an Exposed Hard Bottom Shore in the Seto Inland Sea, Japan, Mar. Ecol. Prog. Ser., 2004, vol. 284, pp. 97–108.

    Article  Google Scholar 

  47. Thompson, M.L., Demographics, Production, and Benthic-pelagic Coupling by the Suspension Feeding Polychaete Chaetopterus pergamentaceus in the Lower Chesapeake Bay, Ph.D. Dissertation, College of William and Mary, Williamsburg, 2000.

    Google Scholar 

  48. Wainright, S.C., Weinstein, M.P., Able, K.W., and Currin, C.A., Relative Importance of Benthic Microalgae, Phytoplankton and the Detritus of Smooth Cordgrass Spartina alterniflora and the Common Reed Phragmites australis to Brackish-Marsh Food Webs, Mar. Ecol. Prog. Ser., 2000, vol. 200, pp. 77–91.

    Article  CAS  Google Scholar 

  49. Zhukova, N.V. and Kharlamenko, V.I., Sources of Essential Fatty Acids in the Marine Microbial Loop, Aquat. Microb. Ecol., 1999, vol. 17, pp. 153–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kharlamenko.

Additional information

Original Russian Text © V.I. Kharlamenko, S.I. Kiyashko, S.A. Rodkina, A.B. Imbs, 2008, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamenko, V.I., Kiyashko, S.I., Rodkina, S.A. et al. Determination of food sources of marine invertebrates from a subtidal sand community using analyses of fatty acids and stable isotopes. Russ J Mar Biol 34, 101–109 (2008). https://doi.org/10.1134/S106307400802003X

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307400802003X

Key words

Navigation