Skip to main content
Log in

Distribution and ultrastructure of tyrosine hydroxylase-positive neurons in CNS of bivalve mollusc Megangulus venulosus under action of elevated temperature and hypoxia

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Using the immunocytochemical methods of light microscopy and electron microscopy, the distribution and ultrastructure of tyrosine hydroxylase (TH)-positive neurons was studied in the CNS of the bivalve mollusc Megangulus venulosus in norm and under the complex action of elevated temperature and hypoxia. The simultaneous effect of elevated temperature and hypoxia has been established to produce changes in the number and structure of TH-immunopositive neurons. The most significant changes in the CNS of M. venulosus were revealed after 60-min action and included the selective damage of processes of large neurons, the destruction of some synapses, and a decrease in TH-immunoreactivity in neurons and neuropil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DA:

dopamine

CA:

catecholamines

NA:

noradrenaline

TH:

tyrosine hydroxylase

L-DOPA:

L-dihydroxyphenylalanin

References

  • Gruntenko, N.E., Karpova, E.K., Alekseeva, A.A., Fadeeva, N.V., and Raushenbakh, I.Yu., Experimental Decrease in the Level of Dopamine Dramatically Reduces the Adaptation of Drosophila virilis, Dokl. Akad. Nauk, 2005, vol. 401, no. 3, pp. 424–426.

    Google Scholar 

  • Kotsyuba, E.P., Effect of Elevated Temperature and Hypoxia on the Activity of the NO-Ergic System of the CNS of Bivalves, Zh. Evol. Biokhim. Fiziol., 2008, vol. 44, no. 2, pp. 200–208.

    Google Scholar 

  • Kotsyuba, E.P., Effect of Temperature Stress on the Activity of NO-Synthase and Tyrosine Hydroxylase in the CNS of Bivalves, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 1, pp. 122–129.

    Google Scholar 

  • Motavkin, P.A. and Varaksin, A.A., Histophysiology of the Nervous System and Regulation of Reproduction in Bivalves. Moscow: Nauka, 1983.

    Google Scholar 

  • Motavkin, P.A., Kotsyuba, E.P., and Deridovich, I.I., Biogenic Monoamines and Monoaminergic Neurons of Some Species of Bivalves, Zh. Evol. Biokhim. Fiziol., 1993, vol. 29, pp. 265–272.

    CAS  Google Scholar 

  • Chertok, V.M., Afanasev, A.A., and Kotsyuba, A.E., Application of the Allegro-MS Automated Image Analysis System for Morphological Studies, Morfologiya, 2003, vol. 124, no. 4, pp. 88–93.

    CAS  Google Scholar 

  • Chen, M., Yang, H., Xu, B., Wang, F., and Liu, B., Catecholaminergic Responses to Environmental Stress in the Hemolymph of Zhikong Scallop Chlamys farreri, J. Exp. Zool., 2008, vol. 309, pp. 289–296.

    Article  Google Scholar 

  • Cooper, J.R., Bloom, F.E., and Roth, R.H., The Biochemical Basis of Neuropharmacology, New York: Oxford University Press, 1991.

    Google Scholar 

  • Coulom, H. and Birman, S., Chronic Exposure to Rotenone Models Sporadic Parkinson’s Disease in Drosophila melanogaster, J. Neurosci., 2004, vol. 24, pp. 10993–10998.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, A., Sukhanova, M.J., and Rauschenbach, I.Y., Biogenic Amines in Drosophila Virilis Under Stress Conditions, Biosci. Biotech. Biochem., 2000, vol. 64, pp. 2625–2630.

    Article  CAS  Google Scholar 

  • Iii, V.H.M., Boadle-Biber, M.C., and Roth, R.H., Dopaminergic Neurons: Activation of Tyrosine Hydroxylase by a Calcium Chelator, Mol. Pharmacol., 1976, vol. 12, pp. 41–48.

    Google Scholar 

  • Kiehn, L., Saleuddin, S., and Lange, A., Dopaminergic Neurons in the Brain and Dopaminergic Innervation of the Albumen Gland in Mated and Virgin Helisoma duryi (Mollusca: Pulmonata), BMC Physiol., 2001, vol. 1, pp. 1–9.

    Article  Google Scholar 

  • Lacoste, A., Malham, S.K., Cueff, A., Jalabert, F., Gelebart, F., and Poulet, S.A., Evidence for a Form of Adrenergic Response to Stress in the Mollusc Crassostrea gigas, J. Exp. Biol., 2001a, vol. 204, pp. 1247–1255.

    PubMed  CAS  Google Scholar 

  • Lacoste, A., Malham, S.K., Cueff, A., and Poulet, S.A., Stress-Induced Catecholamine Changes in the Hemolymph of the Oyster, Crassostrea gigas, Gen. Comp. Endocrinol., 2001b, vol. 122, pp. 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Lansing, M.B., Gardner, W.S., and Eadie, B.J., Catecholamines as Potential Sub-lethal Stress Indicators in Great Lakes Macrobenthic Invertebrates, J. Great Lakes Res., 1993, vol. 19, pp. 569–587.

    Article  CAS  Google Scholar 

  • Malham, S.K., Lacoste, A., Gelebart, F., Cueff, A., and Poulet, S.A., A First Insight into Stress-Induced Neuroendocrine and Immune Changes in the Octopus Eledone cirrhosa, Aquat. Living Resour., 2002, vol. 15, pp. 187–192.

    Article  Google Scholar 

  • Martin, K., Huggins, T., King, C., Carroll, M.A., and Catapane, E.J., The Neurotoxic Effects of Manganese on the Dopaminergic Innervation of the Gill of the Bivalve Mollusc, Crassostrea virginica, Comp. Biochem., 2008, vol. 148, pp. 152–159.

    Google Scholar 

  • Matsutani, T. and Nomura, T., Localization of Monoamines in the Central Nervous System and Gonad of the Scallop, Patinopecten yessoensis, Bull. Jpn. Soc. Sci. Fish., 1984, vol. 50, pp. 425–430.

    CAS  Google Scholar 

  • Maule, A.G, and Vanderkooi, S.P., Stress-Induced Immune-Endocrine Interaction, in Stress Physiology in Animals, Sheffield: Sheffield Academ. Press, 1999, pp. 205–245.

  • Milner, T.A., Joh, T.H., and Pickel, V.M., Tyrosine Hydroxylase in the Rat Parabrachial Region: Ultrastructural Localization and Extrinsic Sources of Immunoreactivity, J. Neuroscience., 1986, vol. 6, pp. 2585–2603.

    CAS  Google Scholar 

  • Neckameyer, W.S. and Weinstein, J.S., Stress Affects Dopaminergic Signaling Pathways in Drosophila Melanogaster, Stress, 2005, vol. 8, pp. 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani, E. and Franceschi, C., The Neuroendocrinology of Stress from Invertebrates to Man, Prog. Neurobiol., 1996, vol. 48, pp. 421–440.

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani, E. and Malagoli, D., Around the Word Stress: Its Biological and Evolutive Implications, Invertebrate Surv. J., 2009, vol. 6, pp. 1–6.

    Google Scholar 

  • Pani, A.K. and Croll, R.P., Distribution of Catecholamines, Indoleamines, and Their Precursors and Metabolites in the Scallop, Placopecten magellanicus (Bivalvia, Pectinidae), Cell. Mol. Neurobiol., 1995, vol. 15, pp. 371–386.

    Article  PubMed  CAS  Google Scholar 

  • Sakharov, D.A. and Salanki, J., Effects of Dopamine Antagonists on Snail Locomotion, Experientia, 1982, vol. 38, pp. 1090–1091.

    Article  CAS  Google Scholar 

  • Sang, T.K., Chang, H.Y., Lawless, G.M., Ratnaparkhi, A., Mee, L., Ackerson, L.C., Maidment, N.T., Krantz, D.E., and Jackson, G.R.A., Drosophila Model of Mutant Human Parkin-Induced Toxicity Demonstrates Selective Loss of Dopaminergic Neurons and Dependence on Cellular Dopamine, J. Neuroscience., 2007, vol. 27, pp. 981–992.

    Article  CAS  Google Scholar 

  • Sesack, S.R., Aoki, C., and Pickel, V.M., Ultrastructural Localization of D2 Receptor-Like Immunoreactivity in Midbrain Dopamine Neurons and Their Striatal Targets, J. Neuroscience, 1994, vol. 14, pp. 88–108.

    CAS  Google Scholar 

  • Schwab, M.E. and Thoenen, H., Mechanism of Uptake and Retrograde Axonal Transport of Noradrenaline in Sympathetic Neurons in Culture: Reserpine-Resistant Large Dense-Core Vesicles as Transport Vesicles, J. Cell. Biol., 1983, vol. 96, pp. 1538–1547.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.A., Nason, J., and Croll, R.P., Distribution of Catecholamines in the Sea Scallop, Placopecten magellanicus, Can. J. Zool., 1998, vol. 76, pp. 1254–1262.

    CAS  Google Scholar 

  • Southall, M.D., Flinn, J.M., Holt, R.W., and Chandhoke, V., Age Dependent Changes in Serotonin and Dopamine Receptors in Aplysia californica, Comp. Biochem. Physiol., 1997, vol. C 118, pp. 137–141.

    Google Scholar 

  • Stefano, GB, and Aiello, E., Histofluorescent Localization of Serotonin and Dopamine in the Nervous System and Gill of Mytilus edulis (Bivalvia), Biol. Bull., 1975, vol. 148, pp. 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Stefano, G.B., Hiripi, L., and Catapane, E.J., The Effects of Short and Long Term Temperature Stress on Serotonin, Dopamine and Norepinephrine Metabolism in Molluscan Ganglia, J. Thermal. Biol., 1978, vol. 3, pp. 79–83.

    Article  CAS  Google Scholar 

  • Stefano, G.B., Salzet, B., Rialas, C.M., Pope, M., Kustka, A., Neenan, K., Pryor, S., and Salzet, M., Morphine- and Anandamide-Stimulated Nitric Oxide Production Inhibits Presynaptic Dopamine Release, Brain Res., 1997, vol. 763, pp. 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Vehovszky, A., Szabo, H., Hiripi, L., Elliott, C.J.H., and Hernadi, L., Behavioural and Neural Deficits Induced by Rotenone in the Pond Snail Lymnaea Stagnalis, A Possible Model for Parkinson’s Disease in an Invertebrate, Eur. J. Neurosci., 2007, vol. 25, pp. 2123–2130.

    Article  PubMed  Google Scholar 

  • Wendelaar Bonga, S.E., The Stress Response in Fish, Physiol. Rev., 1997, vol. 77, pp. 591–625.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Kotsyuba.

Additional information

Original Russian Text © E.P. Kotsyuba, 2011, published in Tsitologiya, Vol. 53, No. 6, 2011, pp. 498–504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsyuba, E.P. Distribution and ultrastructure of tyrosine hydroxylase-positive neurons in CNS of bivalve mollusc Megangulus venulosus under action of elevated temperature and hypoxia. Cell Tiss. Biol. 5, 264–272 (2011). https://doi.org/10.1134/S1990519X11030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X11030047

Keywords

Navigation