Skip to main content
Log in

Role of hydrogen peroxide and ascorbate-glutathione pathway in host resistance to bacterial wilt of eggplant

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum, a soil-borne bacterium causes bacterial wilt, is a lethal disease of eggplant (Solanum melongena L.). However, the first line of defense mechanism of R. solanacearum infection remains unclear. The present study focused on the role of induced H2O2, defense-related enzymes of ascorbate-glutathione pathway variations in resistant and susceptible cultivars of eggplant under biotic stress. Fifteen cultivars of eggplant were screened for bacterial wilt resistance, and the concentration of antioxidant enzymes were estimated upon infection with R. solanacearum. A quantitative real-time PCR was also carried out to study the expression of defense genes. The concentration of H2O2 in the pathogen inoculated seedlings was two folds higher at 12 h after pathogen inoculation compared to control. Antioxidant enzymes of ascorbate-glutathione pathway were rapidly increased in resistant cultivars followed by susceptible and highly susceptible cultivars upon pathogen inoculation. The enzyme activity of ascorbate-glutathione pathway correlates by amplification of their defense genes along with pathogenesis-related protein-1a (PR-1a). The expressions of defense genes increased 2.5−3.5 folds in resistant eggplant cultivars after pathogen inoculation. The biochemical and molecular markers provided an insight to understand the first line of defense responses in eggplant cultivars upon inoculation with the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

APX:

ascorbate peroxidase

BYMV:

Bean yellow mosaic virus

DHAR:

dehydroascorbate reductase

GR:

glutathione reductase

H2O2 :

hydrogen peroxide

HS:

highly susceptible

MDHAR:

monodehydroascorbate reductase

PR:

pathogen-related

R:

resistance

ROS:

reactive oxygen species

S:

susceptible

References

  1. FAO, Food and Agriculture Organization of United Nations, Agriculture Data, 2013. http://www.faostat.com.

  2. Varma, R.K. and Bhale, M.S., Microorganisms for the management of Phomopsis blight and fruit rot of eggplant caused by Phomopsis vexans (Sacc. & Syd.) Harter. L., J. Mycopathol. Res., 2010, vol. 48, pp. 245–249.

    Google Scholar 

  3. Avinash, P. and Umesha, S., Identification and genetic diversity of bacterial wilt pathogen in brinjal, Arch. Phytopathol. Plant Prot., 2013, vol. 47, pp. 398–406.

    Article  Google Scholar 

  4. Vanitha, S.C., Niranjana, S.R., and Umesha, S., Role of phenylalanine ammonia lyase and polyphenol oxidase in host resistance to bacterial wilt of tomato, J. Phytopathol., 2009, vol. 157, no. 9, pp. 552–557.

    Article  CAS  Google Scholar 

  5. Umesha, S. and Avinash, P., Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans, 3 Biotech, 2014, vol. 5, pp. 245–252.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Remenant, B., Goutaland, B.C., Guidot, A., Cellier, G., Wicker, E., Allen, C., Fegan, M., Pruvost, O., Elbaz, M., Calteau, A., Salvignol, G., Mornico, D., Mangenot, S., Barbe, V., Médigue, C., et al., Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence, BMC Genomics, 2010, vol. 11: 379.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ramesh, R. and Phadke, G.S., Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum, Crop Prot., 2008, vol. 72, pp. 56–61.

    Google Scholar 

  8. Shanker, A.K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C., and Pathmanabhan, N., Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv. CO 4) roots, Plant Sci., 2004, vol. 166, pp. 1035–1043.

    Article  CAS  Google Scholar 

  9. Chen, Y.P., Xing, L.P., Wu, G.J., Wang, H.Z., Wang, X.E., Cao, A.Z., and Chen, P.D., Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum), Plant Cell Physiol., 2007, vol. 48, pp. 1702–1712.

    Article  CAS  PubMed  Google Scholar 

  10. Chew, O., Whelan, J., and Millar, A.H., Molecular definition of the ascorbate–glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants, J. Biol. Chem., 2003, vol. 278, pp. 46 869–46 877.

    Article  Google Scholar 

  11. Lin, K.H., Lo, H.F., Lin, C.H., and Chan, M.T., Cloning and expression analysis of ascorbate peroxidase gene from eggplant under flooding stress, Bot. Stud., 2007, vol. 48, pp. 25–34.

    CAS  Google Scholar 

  12. D'Arcy-Lameta, A., Ferrari-Iliou, R., Contour-Ansel, D., Pham-Thi, A., and Zuily-Fodil, Y., Isolation and characterization of four ascorbate peroxidase cDNAs responsive to water deficit in cowpea leaves, Ann. Bot., 2006, vol. 97, pp. 133–140.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Contour-Ansel, D., Torres-Franklin, L.M., de Carvalho, M.H.C., D’Arcy-Lameta, A., and Zuily-Fodil, Y., Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment, Ann. Bot., 2006, vol. 98, pp. 1279–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kavitha, R. and Umesha, S., Regulation of defenserelated enzymes associated with bacterial spot resistance in tomato, Phytoparasitica, 2008, vol. 36, no. 2, pp. 144–159.

    Article  CAS  Google Scholar 

  15. Mandal, S., Mitra, A., and Mallick, N., Biochemical characterization of oxidative burst during interaction between Solanum lycopersicon and Fusarium oxysporum f. sp. lycopersici, Physiol. Mol. Plant Pathol., 2008, vol. 72, pp. 56–61.

    Article  CAS  Google Scholar 

  16. Trans-Kersten, J., Huang, H., and Allen, C., Ralstonia solanacearum needs motility for invasive virulence on tomato, J. Bacteriol., 2001, vol. 183, pp. 3597–3605.

    Article  Google Scholar 

  17. Kelman, A., The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium, Phytopathology, 1954, vol. 44, pp. 639–695.

    Google Scholar 

  18. Prakasha, A., Umesha, S., Raghava, S., and Marahel, S., Discrimination of Ralstonia solanacearum isolates by genetic signatures produced by single-strand conformation polymorphism and low-stringency single specific primer PCR analysis, Afr. J. Microbiol. Res., 2016, vol. 10, no. 30, pp. 1128–1139.

    Article  Google Scholar 

  19. Milling, A., Babujee, L., and Allen, C., Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants, PLoS One, 2011, vol. 6, p. e15853. doi 10.1371/journal. pone.0015853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hossain, M.A., Nakano, Y., and Asada, K., Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide, Plant Cell Physiol., 1984, vol. 25, pp. 385–395.

    CAS  Google Scholar 

  21. Feng, H., Wang, X., Zhang, Q., Fu, Y., Feng, C., Bing, W., Huang, L., and Kang, Z., Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism, Biochim. Biophys. Acta, 2014, vol. 1839, no. 1, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  22. Kiirika, L.M., Stahl, F., and Wydra, K., Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum, Physiol. Mol. Plant Pathol., 2013, vol. 81, pp. 1–12.

    Article  CAS  Google Scholar 

  23. Mehdy, M.C., Active oxygen species in plant defense against pathogens, Plant Physiol., 1994, vol. 105, pp. 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bao, G., Bi, Y., Li, Y., Kou, Z., Hu, L., Ge, Y., Wang, Y., and Wang, D., Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers, Physiol. Mol. Plant Pathol., 2014, vol. 86, pp. 35–42.

    Article  CAS  Google Scholar 

  25. Chen, S., Zimel, L., Cui, J., Ding, J., Xia, X., Liu, D., and Yu, J., Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings, Plant Growth Regul., 2011, vol. 65, pp. 101–108.

    Article  CAS  Google Scholar 

  26. Radwan, D.E.M., Fayez, K.A., Mahmoud, S.Y., Hamad, A., and Lu, G., Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments, Acta Physiol. Plant., 2010, vol. 32, no. 5, pp. 891–904.

    Article  CAS  Google Scholar 

  27. Lotfi, R., Gharavi-Kouchebagh, P., and Khoshvaghti, H., Biochemical and physiological responses of Brassica napus plants to humic acid under water stress, Russ. J. Plant Physiol., vol. 62, no. 4, pp. 480–486.

  28. Prasath, D., El-Sharkawy, I., Tiwary, K.S., Jayasankar, S., and Sherif, S., Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection, Plant Cell Rep., 2011, vol. 30, no. 10, pp. 1799–1809.

    Article  CAS  PubMed  Google Scholar 

  29. Prakasha, A. and Umesha, S., Biochemical and molecular variations of guaiacol peroxidase and total phenols in bacterial wilt pathogenesis of Solanum melongena, Biochem. Anal. Biochem., 2016, vol. 5, p. 292. doi 10.4172/ 2161-1009.1000292

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Umesha.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avinash, P., Umesha, S. & Marahel, S. Role of hydrogen peroxide and ascorbate-glutathione pathway in host resistance to bacterial wilt of eggplant. Russ J Plant Physiol 64, 375–385 (2017). https://doi.org/10.1134/S1021443717030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030049

Keywords

Navigation