Skip to main content
Log in

Increased Productivity and Antifreeze Activity of Ice-binding Protein from Flavobacterium frigoris PS1 Produced using Escherichia coli as Bioreactor

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Ice-binding proteins (IBPs) inhibit the growth and recrystallization of intracellular ice, enabling polar organisms to survive at subzero temperatures. IBPs are promising materials in biomedical applications such as cryopreservation and the hypothermic storage of cells, tissues, and organs. In this study, recombinant IBP from the antarctic bacterium Flavobacterium frigoris PS1 (FfIBP) was produced by Escherichia coli used as bioreactor, to examine the feasibility of scale-up. Oxygen transfer was the most important factor influencing cell growth and FfIBP production during pilot-scale fermentation. The final yield of recombinant FfIBP produced by E. coli harboring the pET28a-FfIBP vector system was 1.6 g/L, 3.8-fold higher than that from the previously published report using pCold I-FfIBP vector system, and its thermal hysteresis activity was 2.5°C at 9.7 µM. This study demonstrates the successful pilot-scale production of FfIBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Gilbert, J.A., Hill, P.J., Dodd, C.E., and Laybourn-Parry, J., Microbiology, 2004, vol. 150, no. 1, pp. 171–180.

    Article  CAS  Google Scholar 

  2. Kawahara, H., Iwanaka, Y., Higa, S., Muryoi, N., Sato, M., Honda, M., et al., Cryo Lett., 2007, vol. 28, no. 1, pp. 39–49.

    CAS  Google Scholar 

  3. Hoshino, T., Kiriaki, M., Ohgiya, S., Fujiwara, M., Kondo, H., Nishimiya, Y., et al., Can. J. Bot., 2003, vol. 81, no. 12, pp. 1175–1181.

    Article  CAS  Google Scholar 

  4. Kondo, H., Hanada, Y., Sugimoto, H., Hoshino, T., Garnham, C.P., Davies, P.L., and Tsuda, S., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 24, pp. 9360–9365.

    Article  CAS  Google Scholar 

  5. Cold–Adapted Yeasts. Biodiversity, Adaptation Strategies and Biotechnological Significance, Buzzini, P. and Rosa Margesin, R., Eds., Heidelberg, Germany: Springer–Verlag, 2014.

  6. Janech, M.G., Krell, A., Mock, T., Kang, J.S., and Raymond, J.A., J. Phycol., 2006, vol. 42, no. 2, pp. 410–416.

    Article  CAS  Google Scholar 

  7. Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C.J., et al., Biochem. J., 1999, vol. 340, no. 2, pp. 385–391.

    Article  CAS  Google Scholar 

  8. Griffith, M. and Yaish, M.W.F., Trends Plant Sci., 2004, vol. 9, no. 8, pp. 399–405.

    Article  CAS  Google Scholar 

  9. Middleton, A.J., Brown, A.M., Davies, P.L., and Walker, V.K., FEBS Lett., 2009, vol. 583, no. 4, pp. 815–819.

    Article  CAS  Google Scholar 

  10. Duman, J.G., Bennett, V., Sformo, T., Hochstrasser, R., and Barnes, B.M., J. Insect Physiol., 2004, vol. 50, no. 4, pp. 259–266.

    Article  CAS  Google Scholar 

  11. Hakim, A., Nguyen, J.B., Basu, K., Zhu, D.F., Thakral, D., Davies, P.L., et al., J. Biol. Chem., 2013, vol. 288, no. 17, pp. 12 295–12 304.

    Article  Google Scholar 

  12. DeVries, A.L., Komatsu, S.K., and Feeney, R.E., J. Biol. Chem., 1970, vol. 245, no. 11, pp. 2901–2908.

    CAS  PubMed  Google Scholar 

  13. Chao, H.M., Davies, P.L., and Carpenter, J.F., J. Exp. Biol., 1996, vol. 199, no. 9, pp. 2071–2076.

    CAS  PubMed  Google Scholar 

  14. Chi, H.J., Koo, J.J., Kim, M.Y., Joo, J.Y., Chang, S.S., and Chung, K.S., Hum. Reprod., 2002, vol. 17, no. 8, pp. 2146–2151.

    Article  CAS  Google Scholar 

  15. Akkok, C.A., Liseth, K., Hervig, T., Ryningen, A., Bruserud, O., and Ersvaer, E., Cytotherapy, 2009, vol. 11, no. 6, pp. 749–760.

    Article  Google Scholar 

  16. Burkey, A.A., Riley, C.L., Wang, L.K., Hatridge, T.A., and Lynd, N.A., Biomacromolecules, 2018, vol. 19, no. 1, pp. 248–255.

    Article  CAS  Google Scholar 

  17. Mitchell, D.E., Clarkson, G., Fox, D.J., Vipond, R.A., Scott, P., and Gibson, M.I., J. Am. Chem. Soc., 2017, vol. 139, no. 29, pp. 9835–9838.

    Article  CAS  Google Scholar 

  18. Dreischmeier, K., Budke, C., Wiehemeier, L., Kottke, T., and Koop, T., Sci. Rep., 2017, vol. 7, p. 41 890.

    Article  Google Scholar 

  19. Moore, M.M., Kanekar, S.G., and Dhamija, R., Radiol. Case Rep., 2008, vol. 3, no. 1, pp. 122.

    Article  Google Scholar 

  20. Best, B.P., Rejuv. Res., 2015, vol. 18, no. 5, pp. 422–436.

    Article  Google Scholar 

  21. Kim, E.J., Lee, J.H., Lee, S.G., and Han, S.J., KSBB J., 2017, vol. 32, no. 4, pp. 300–305.

    Article  Google Scholar 

  22. Lee, J.H., Park, A.K., Do, H., Park, K.S., Moh, S.H., Chi, Y.M., et al., J. Biol. Chem., 2012, vol. 287, no. 14, pp. 11 460–11 468.

    Article  Google Scholar 

  23. Lee, J.H., Lee, S.G., Do, H., Park, J.C., Kim, E., Choe, Y.H., et al., Appl. Microbiol. Biot., 2013, vol. 97, no. 8, pp. 3383–3393.

    Article  CAS  Google Scholar 

  24. Do, H., Kim, S.J., Kim, H.J., and Lee, J.H., Acta Crystallogr. D, 2014, vol. 70, no. 4, pp. 1061–1073.

    Article  CAS  Google Scholar 

  25. Kim, E.J., Lee, J.H., Lee, S.G., and Han, S.J., Prep. Biochem. Biotech., 2017, vol. 47, no. 3, pp. 299–304.

    Article  CAS  Google Scholar 

  26. Kim, E.J., Lee, J.H., Lee, S.G., and Han, S.J., KSBB J., 2015, vol. 30, no. 6, pp. 345–349.

    Article  Google Scholar 

  27. Farewell, A., and Neidhardt, F.C., J. Bacteriol., 1998, vol. 180, no. 17, pp. 4704–4710.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Raymond, J.A. and Kim, H.J., Plos One, 2012, vol. 7, no. 5. e35968.

    Article  CAS  Google Scholar 

  29. Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  30. Malakar, P. and Venkatesh, K.V., Appl. Microbiol. Biot., 2012, vol. 93, no. 6, pp. 2543–2549.

    Article  CAS  Google Scholar 

  31. Junker, B.H., J. Biosci. Bioeng., 2004, vol. 97, no. 6, pp. 347–364.

    Article  CAS  Google Scholar 

  32. Doxey, A.C., Yaish, M.W., Griffith, M., and McConkey, B.J., Nat. Biotechnol., 2006, vol. 24, no. 7, pp. 852–855.

    Article  CAS  Google Scholar 

  33. Bar-Dolev, M., Celik, Y., Wettlaufer, J.S., Davies, P.L., and Braslavsky, I., J. R. Soc. Interface, 2012, vol. 9, no. 77, pp. 3249–3259.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. E.S. Jin (Hanyang University) for her generous support and use of facilities, and Mr. M.J. Kim (Hanyang University) for his technical assistance in the use of the osmometer. This research was supported by research projects (PE18180 and PE18210) from the Korea Polar Research Institute, Incheon, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Han.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.J., Kim, J.E., Hwang, J.S. et al. Increased Productivity and Antifreeze Activity of Ice-binding Protein from Flavobacterium frigoris PS1 Produced using Escherichia coli as Bioreactor. Appl Biochem Microbiol 55, 489–494 (2019). https://doi.org/10.1134/S0003683819050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819050077

Keywords:

Navigation