DNA: Replication, Repair, Recombination, and Chromosome Dynamics
Reconstitution of Uracil DNA Glycosylase-initiated Base Excision Repair in Herpes Simplex Virus-1*

https://doi.org/10.1074/jbc.M109.010413Get rights and content
Under a Creative Commons license
open access

Herpes simplex virus-1 is a large double-stranded DNA virus that is self-sufficient in a number of genome transactions. Hence, the virus encodes its own DNA replication apparatus and is capable of mediating recombination reactions. We recently reported that the catalytic subunit of the HSV-1 DNA polymerase (UL30) exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities that are integral to base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we have reconstituted a system with purified HSV-1 and human proteins that perform all the steps of uracil DNA glycosylase-initiated base excision repair. In this system nucleotide incorporation is dependent on the HSV-1 uracil DNA glycosylase (UL2), human AP endonuclease, and the HSV-1 DNA polymerase. Completion of base excision repair can be mediated by T4 DNA ligase as well as human DNA ligase I or ligase IIIα-XRCC1 complex. Of these, ligase IIIα-XRCC1 is the most efficient. Moreover, ligase IIIα-XRCC1 confers specificity onto the reaction in as much as it allows ligation to occur in the presence of the HSV-1 DNA polymerase processivity factor (UL42) and prevents base excision repair from occurring with heterologous DNA polymerases. Completion of base excision repair in this system is also dependent on the incorporation of the correct nucleotide. These findings demonstrate that the HSV-1 proteins in combination with cellular factors that are not encoded by the virus are capable of performing base excision repair. These results have implications on the role of base excision repair in viral genome maintenance during lytic replication and reactivation from latency.

Cited by (0)

*

This work was supported, in whole or in part, by National Institutes of Health Grant GM62643.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Fig. 1.